Alan Taylor Civil Pty Ltd

Stage 1 Site Contamination Assessment

Proposed Rezoning

Lot 2 DP 601094 and Lot 4 DP 825704, 11 and 33 Mumford Street, Port Macquarie

Report No. RGS20683.1-AC_Rev1 15 August 2022

REGIONAL GEOTECHNICAL SOLUTIONS

RGS20683.1-AC_Rev1

15 August 2022

Alan Taylor Civil Pty Ltd 3 Bundarra Way BONNY HILLS NSW 2445

Attention: Alan Taylor

Dear Alan,

RE: Proposed Rezoning – Lot 2 DP 601094 and Lot 4 DP 825704, 11 and 33 Mumford Street, Port Macquarie

Stage 1 Site Contamination Assessment

As requested, Regional Geotechnical Solutions Pty Ltd (RGS) has undertaken a Stage 1 Site Contamination Assessment for the proposed rezoning at Lot 2 DP 601094 and Lot 4 DP 825704, 11 and 33 Mumford Street, Port Macquarie.

The assessment found the site is likely to be appropriate for the proposed rezoning to C2 – Environmental Conservation and B5 – Business Development from a site contamination perspective provided the recommendations and advice of this report are adopted.

It is noted that a fragment of asbestos containing material (ACM) was encountered near the maintenance sheds in the school (Lot 4). An Asbestos Management Plan should therefore be prepared for the site and further investigation is recommended in this vicinity to delineate the potential extent of ACM.

The work presented herein was reviewed by Dr David Tully CEnvP SC. A copy of Dr Tully's letter pertaining to the review is appended to the report.

If you have any questions regarding this project, please contact the undersigned.

For and on behalf of Regional Geotechnical Solutions Pty Ltd

Prepared by

Tim Morris Associate Engineering Geologist

Table of Contents

1	INT	RODUCTION1						
2	GL	GUIDELINES AND ASSESSMENT CRITERIA 1						
3	ME	THODOLOGY						
4	SIT	e setting and history						
	4.1	Site Description2						
	4.2	Historical Aerial Photography3						
	4.3	NSW EPA Records						
	4.4	Land Title Search						
	4.5	Geology5						
	4.6	Groundwater						
	4.7	Council Records7						
	4.8	Site Observations7						
	4.9	Supplied Information8						
	4.10	Site History Summary						
5	SIT	E CONTAMINATION ASSESSMENT9						
	5.1	Conceptual Site Model9						
	5.2	Field Work10						
	5.3	Sample Description						
	5.4	Ground Conditions Encountered12						
	5.5	Laboratory Testing						
	5.6	Quality Control						
	5.7	Analysis Results						
	5.8	HIL A – Lot 4 (School site)						
	5.9	HIL D – Lot 2 (Proposed business site)15						
6	AS	sessment and conclusions regaridng site contamination						
	6.1	Summary						
	6.2	Conclusion16						
7	LIN	AITATIONS						

Figures

Figure 1	Proposed Site Zoning
Figure 2	Investigation Location Plan
Figure 3	Historical Aerial Photograph – 1956
Figure 4	Historical Aerial Photograph – 1975
Figure 5	Historical Aerial Photograph – 1981
Figure 6	Historical Aerial Photograph – 1989
Figure 7	Historical Aerial Photograph – 1991
Figure 8	Historical Aerial Photograph – 2012
Figure 9	Aerial Photograph – 2022

Appendices

Appendix A	Site History Documentation
Appendix B	Results of Field Investigations
Appendix C	Laboratory Test Result Sheets
Appendix D	Letter from David Tully CEnvP SC

1 INTRODUCTION

Regional Geotechnical Solutions Pty Ltd (RGS) have undertaken a Stage 1 Site Contamination Assessment for the proposed rezoning of Lot 2 DP 601094 and Lot 4 DP 825704, at 11 and 33 Mumford Street, respectively, Port Macquarie.

The western Lot 4 DP 825704 is occupied by the Heritage Christian School which comprises multiple school buildings, outdoor play areas and sealed car parks. The school includes infants, primary and secondary campuses. Within the eastern Lot 2 DP 601094, a large brick and metal clad building is present on a raised fill platform. Areas of sealed car park and gravel hard stand surround the building.

It is understood that the site is currently zoned as C2 – Environmental Conservation and R1 – General Residential. A development application has been submitted to rezone the lots to C2 – Environmental Conservation and B5 – Business Development. The proposed rezoning of the site is shown in Figure 1.

The purpose of the work described herein was to assess the suitability of Lot 4 for its existing school use and Lot 2 for future commercial use with respect to the presence of site contamination resulting from past land use and activities, as well as providing discussions and recommendations regarding:

- Identification of Areas of Environmental Concern (AEC) and Chemicals of Concern (COC);
- The undertaking of limited targeted sampling and analysis at the selected AEC to allow some preliminary analysis of the presence of contamination;
- Evaluation of test results against industry accepted criteria for the intended landuse;
- Conclusions regarding the presence of contamination at the site and its potential impacts on the proposed school or commercial landuse; and
- The requirement for remediation, further investigation, or ongoing management of site contamination.

The work was commissioned by Alan Taylor on behalf of Alan Taylor Civil Pty Ltd and was undertaken in accordance with proposal number RGS20683.1-AB, dated 8 June 2022.

2 GUIDELINES AND ASSESSMENT CRITERIA

The assessment was aimed at fulfilling the requirements of a Stage 1 Contaminated Site Assessment in accordance with NSW EPA Guidelines for Consultants Reporting on Contaminated Land (2020)

To evaluate results and for guidance on assessment requirements, the assessment adopted the guidelines provided in the National Environment Protection (Assessment of Site Contamination) Measure (NEPM 2013). The NEPM document provides a range of guidelines for assessment of contaminants for various land use scenarios. The proposed continued landuse as a primary school in Lot 4 and commercial land use in Lot 2. As such comparison with the NEPM guideline values for residential, child care, preschool and primary school Health Investigation Level (HIL)-A landuse was considered appropriate for Lot 4 and commercial land use (HIL-D) for Lot 2. In accordance with the NEPM guideline the following criteria were adopted for this assessment:

- Health Investigation Levels (HILs) for residential, child care, preschool and primary school land use were used for Lot 4 and Health Investigation Levels (HILs) for commercial land use for Lot 2 to assess the potential human health impact of heavy metals and polycyclic aromatic hydrocarbons (PAH);
- Health Screening Levels (HSLs) for coarse textured (sand) or fine textured (silt and clay) soils on a residential site were adopted for Lot 4 and commercial land use for Lot 2 as

appropriate for the soils encountered to assess the potential human health impact of petroleum hydrocarbons and benzene, toluene, ethyl-benzene, xylenes (BTEX) compounds;

- Ecological Investigation Levels (EILs) for urban residential/public open space land use were
 used for Lot 4 and commercial land use for Lot 2, for evaluation of the potential ecological /
 environmental impact of heavy metals and PAH;
- Ecological Screening Levels (ESLs) for coarse textured (sand) soils or fine textured (silt and clay) soils on a Residential land use site were adopted for Lot 4 and commercial land use for Lot 2 as appropriate for the soils encountered, to assess the potential ecological / environmental impact of petroleum hydrocarbons and BTEX compounds.

In accordance with NEPM 2013, exceedance of the criteria does not necessarily deem that remediation is required, but is a trigger for further assessment of the extent of contamination and associated risks. The adopted criteria are presented in the results summary table in Appendix C.

3 METHODOLOGY

In accordance with the relevant sections of the National Environmental Protection (Assessment of Site Contamination) Measure 1999 (Amended 2013), the assessment involved the following process:

- A brief study of site history, with the aim of identifying past activities on or near the site that might have the potential to cause contamination;
- Review of selected available recent and historical aerial photography for the last 50 years;
- A search of NSW EPA records, or contaminated land notifications on the site;
- Government records of groundwater bores in the area;
- Land title search of the respective lots available from the Land Titles Office;
- Using the above information, characterise the site into Areas of Environmental Concern, in which the potential for contamination has been identified, and nominate Chemicals of Concern that might be associated with those activities;
- Undertake targeted sampling and analysis at the selected Areas of Concern to allow some preliminary analysis of the presence of contamination;
- Analyse samples for a suite of potential contaminants associated with the past activities; and
- Evaluate the results against industry accepted criteria for the proposed land use.

4 SITE SETTING AND HISTORY

4.1 Site Description

Lot 2 DP601094 and Lot 4 DP825704 at 11 and 33 Mumford Street, respectively are located in gently undulating low lying topography to the south of Mumford Street. The Heritage Christian School is located in Lot 4 and a large brick and metal clad building on Lot 2.

Both lots appear to have been modified by historical filling earthworks. The surface contours on the supplied drawing shows surface levels on the southern boundaries of both lots is approximately 1m AHD as shown in Figure 2. Areas in the north of both lots appear to have been modified by filling works and surface elevations grade up to approximately 3m AHD in elevation near Mumford Street.

A low-lying alluvial depression is present to the west of Lot 4 and a low sand plain is present to the south of the site. A shallow drain approximately 3m wide is present along the rear (southern) boundary of both lots and was flowing to the west at the time of the fieldwork.

A satellite image that shows the location of the site, the two lots and the site setting is reproduced in Plate 1.

Plate 1: Satellite image dated 2012 obtained from the NSW Government 'Six Maps' website that illustrates the site location and setting. The approximate site boundaries are outlined in red.

Vegetation present in Lot 4 comprised areas of low maintained grass with scattered eucalypts. Melaleuca trees are present in the north west corner of the lot and casuarina trees were present along the southern boundary.

Vegetation in Lot 2 comprised open grassed area maintained by slashing with some scattered trees and bushes. Thick bushes and swamp grasses were present in the south west corner of Lot 2 where surface water was pooling at the time of fieldwork.

4.2 Historical Aerial Photography

Aerial photographs of the site were purchased from the NSW Spatial Services and reviewed to assist in identifying past land uses that may contribute to site contamination. The results of the review are summarised in Table 1.

Table 1-	Aerial	Photograph	Summary
----------	--------	------------	---------

Year	Site	Surrounding Land		
1956 Figure 3	The site has been mostly cleared of vegetation, with the exception of the western portion. An inferred alluvial depression commences in the centre of the site and drains towards the north west corner of the site. A farm dwelling is present in the centre north of site, accessed via Hastings River Drive.	Land to the north and east has been cleared, likely for grazing with scatted farm dwellings. Areas to the west and south are heavily vegetated.		
1975 Figure 4	Vegetation in the south-west corner has been cleared. The farm dwelling and possibly two associated sheds present in north of the site, accessed via Mumford Road.	Mumford Street has been formed as a gravel access place along the northern boundary. A caravan park is present to the north west of the site. Several structures including a dwelling and surrounding sheds are observed in the		
	Former dwelling is not visible and an area of	adjacent lot to the east.		
1981 Figure 5	ground disturbance approximately 50m x 50m is visible in and south of the former dwelling location. Image appears to show fill being pushed out from Mumford Street towards the south.	to the east.		
1989 Figure 6	Both lots have been developed with four buildings and a car park present in Lot 4 (School site) and a single large building and car park in Lot 2. Excavation works are visible along the southern and western boundaries where a modified drainage channel is present.	Several structures and tennis courts are present in the adjacent lot to the east.		
1991	No significant change.	Industrial developments (car yards) have		
Figure 7	Additional filling works using red clay is occurring to the south east of the school buildings in Lot 4.	been constructed to the north of Mumford Street.		
2012	Six additional structures are present in the school site in Lot 4.	Further industrial development (storage sheds) to the north of Mumford Street.		
Figure 8	No significant change to Lot 2.			
2022	No significant change to Lot 4.	Further residential development to the east		
Figure 9	Approximately 50 cars are visible in Lot 2 in the sealed car park and in grassed areas	ot the site.		

4.3 NSW EPA Records

A check with the NSW EPA website (<u>www.epa.nsw.gov.au</u>) revealed that no notices have been issued on the site under the Contaminated Land Management Act (1997).

4.4 Land Title Search

A list of past registered proprietors and lessors of the site was obtained from the Land Titles Office. A summary of the title details is included in Appendix A.

The title history search revealed the following for Lot 2 DP 601094:

- 09 Nov 2016 to date: Gantons Pty Ltd (ACN 003 088 453)
- 31 Aug 1988 to 09 Nov 2016: Christian Outreach Centre (ARBN 008 388 092)
- 05 Nov 1985 to 31 Aug 1988: Australian Christian Outreach Centre Limited
- 25 Jul 1984 to 05 Nov 1985: Geoffrey Mark Hammond Elaine Dawn Hammond
- 01 Feb 1984 to 25 Jul 1984: Christopher Francis McCarron Frederick James Cahill
- 11 Aug 1977 to 01 Feb 1984: Charles Bruce Thomas, electrical contractor
- 07 Apr 1975 to 11 Aug 1997: Susan Maria Marchant, wife of David Durack Marchant
- 14 Nov 1974 to 07 Apr 1975: Susan Maria Nicholls, widow
- 01 Mar 1972 to 14 Nov 1974: Roger Philip Nicholls
- 30 Apr 1970 to 01 Mar 1972: Patricia Maria Shelton, widow
- 14 Dec 1965 to 30 Apr 1970: Alfred Henry Shelton, agent Patricia Maria Shelton, his wife
- 23 Jun 1959 to 14 Dec 1965: William Charles Raddatz, retired farmer
- 01 May 1953 to 23 Jun 1959: Alice Raddatz, married woman
- 08 Sep 1938 to 01 May 1953: Edward Francis Grace, retired dairy farmer
- 04 Nov 1909 to 08 Sep1938: Eli Sonter, labourer
- 03 Oct 1906 to 04 Nov 1909: Leslie George Wilson, millhand

The title history search revealed the following for Lot 4 DP 825704:

- 16 Nov 1992 to date: Hastings Association for Christian Education Limited
- 08 Feb 1990 to date: Hastings Association for Christian Education Limited
- 09 Jul 1980 to 08 Feb 1990: Errol Edwin Stein, business proprietor, Jean Margaret Stein, his wife
- 02 Jan 1975 to 09 Jul 1980: Cove House Australia Pty Limited
- 25 Sep 1973 to 25 Sep 1973: Tapago Pty Limited
- 01 Feb 1973 to 25 Sep 1973: Celia Patricia Mumford, spinster
- 04 Jan 1944 to 01 Feb 1973: Stella Rebecca Pearl Mumford, married woman
- 20 Jun 1906 to 04 Jan 1944: Florence May Westley, wife of Richard Charles Edgar Westley, labourer

4.5 Geology

Reference to the Port Macquarie Coastal Quaternary Geology 1:25,000 Sheet (Troedson et al 2008) indicates the site contains an estuarine fluvial delta front (Qhemd) that crosses the site from north west to south east, a backbarrier sandplain (Qpbf) in the south west and a tidal delta flat to the east (Qhef). An excerpt of the Sheet is reproduced in Plate 2.

4.6 Groundwater

A groundwater bore search on the Water NSW website indicates that there are no licensed groundwater bores within 200m of the site boundary. The nearest licensed bore is located approximately 250m to the north west as shown in Plate 3.

Plate 3: Approximate boundary of Lot 2 DP601094 and Lot 4 DP825704 outlined in red. Nearest licensed groundwater bore (GW304701) is located approximately 250m to the northwest.

Regional groundwater flow direction typically follows topographic slopes, which for this site would be towards the south and west.

4.7 Council Records

Reference to the Port Macquarie Hastings Council Local Environment Plan (LEP) shows the site is currently zoned as C2 – Environmental Conservation and R1 – General Residential.

4.8 Site Observations

Fieldwork was undertaken on 16 June 2022. Observations made during the site visit are summarised below:

- Existing structures have been built on raised fill embankment that were up to approximately 2m above existing surface levels;
- School buildings were typically single storey and brick construction. Two metal sheds for maintenance equipment were present on the southern boundary;
- Low lying swamp landscape was present to the south and west of the site. Water was flowing to the west in the drain on the southern boundary; and
- In Lot 2 a large brick and metal clad building was constructed on a raised fil embankment. Approximately 50 cars were parked/stored in the grassed areas and on the gravel hardstand and sealed car park surrounding the building. The building was locked at the time of fieldwork.

Selected site photographs are presented below.

Lot 4 (TP3): Metal sheds located on the southern boundary that appear to be used for storage of maintenance equipment. The sheds are constructed on a 0.5m high fill embankment.

Lot 4: Single storey brick classrooms in east of Lot 4, constructed on 2m high fill embankment. Red clay soils exposed in embankment.

4.9 Supplied Information

Prior to 2016, Lot 2 was owned by the Christian Outreach Centre and the building present is understood to have been used by the Coastwide Church as a place of worship.

Since 2017, Lot 2 has been used as a temporary storage facility for new vehicles that are sold from the adjacent car dealership (Andrew Miedecke Hyundai) to the north of Mumford Street. It is understood that there are some trade in cars also present, some of which are in poor condition and are being stored temporarily before being sent off site for disposal. The building is being used to prepare new cars for sale which includes some polishing and cleaning. It is understood that no repairs or car maintenance is being undertaken on site.

4.10 Site History Summary

Based on available data the chronological development of the site was undertaken as summarised below:

- Aerial photographs indicate a farm house was present in the north of the site near the Lot 2 and Lot 4 boundary from between the late 1950s or 1960s until the late 1970s. The site of the previous dwelling was modified by filling works visible in 1981 which appear to have extended out from Mumford Street towards the south across both subject lots. Supplied detail survey shows surface levels of up to RL3m in the north of the site and RL1m in the south, suggesting up to 2m of fill may be present;
- Lot 4 was owned by Hastings Association for Christian Education from 1986. Construction works for the Heritage Christian School commenced between 1981 and 1989. There were 12 structures present at the site in 2012 and the site layout does not appear to have changed significantly since then;
- Site filling works and construction of the large brick and metal clad building on Lot 2 occurred in the same period as the adjacent school development between 1981 and 1989;
- Lot 2 was purchased by Grantons Pty Ltd in 2016 and since 2017, satellite imagery indicates the site has been used as a storage for vehicles. It is understood the stored vehicles are associated with the car dealership located to the north of Mumford Street with up to approximately 50 vehicles present. The vehicles present include new cars for sale and old cars that are stored temporarily prior to disposal off site. The building is understood to be used for cleaning of the vehicles prior to sale.

5 SITE CONTAMINATION ASSESSMENT

5.1 Conceptual Site Model

Based on the site observations and knowledge obtained about site activities as outlined above, potential Areas of Concern and Chemicals of Concern were identified for the assessment as outlined in Table 2. Refer to Figure 1 for location of the identified AECs within the site.

Area of Environmental Concern	The	Chemicals of Concern	Targeted Sampling Location		
AEC1: Soils below building areas in school site (Lot 4)	Imported fill of unknown origin	Heavy Metals, TPH, BTEX, PAH, OC/OPP, asbestos	TP1, TP4		
AEC2: Soils surrounding school maintenance shed constructed on fill platform (Lot 4)	Imported fill of unknown origin, potential spillage of chemicals from containers including cleaning fluids/ fuel/oils, pesticides	Heavy Metals, TPH, BTEX, PAH, OC/OPP, asbestos	TP3		
AEC3: Soils below and surrounding existing building in Lot 2 constructed on fill platform. Used for car storage.	Imported fill of unknown origin. Potential spillage of chemicals including fuel and oils	Heavy Metals, TPH, BTEX, PAH, OC/OPP, asbestos	TP8, TP10		
Heavy Metals - Arsenic, Cadmium, Chromium, Copper, Lead, Mercury, Nickel and Zinc BTEX - Benzene, Toluene, Ethylbenzene and Xylene TPH - Total Petroleum Hydrocarbons PAH – Polycyclic Aromatic Hydrocarbons OC/OPP – Organochlorine and Organophosphorus Pesticides					

Table 2:	Conceptual	Site	Model
----------	------------	------	-------

The risk of groundwater contamination at the site was considered low as the potential sources of contamination were typically of surface origin. An assessment of groundwater assessment was therefore not undertaken as part of this preliminary contamination assessment. Assessment of soil vapours were not undertaken as it is also beyond the scope of this preliminary contamination assessment.

The presence of measurable concentrations of chemical substances does not automatically imply that the site will cause harm. In order for this to be the case, an exposure route must be present allowing a source to adversely affect a receptor.

Based on the site observations and knowledge obtained about site activities as outlined above, potential exposure routes linking chemicals of concern with identified receptors to form plausible exposure routes are summarised in Table 3.

Area of Environmental Concern	Chemicals of Concern	Exposure Route	Receptors	Comment
AEC1: Soils below building areas in school site (Lot 4)	Heavy Metals, TPH, BTEX, PAH, OC/OPP, asbestos	Inhalation, dermal contact, ingestion	Site users, services maintenance and construction workers	Possible risk from historical fill
AEC2: Soils surrounding school maintenance shed constructed on fill platform (Lot 4)	Heavy Metals, TPH, BTEX, PAH, OC/OPP, asbestos	Inhalation, dermal contact, ingestion	Site users, services maintenance and construction workers	Possible risk from historical fill and storage of chemicals
AEC3: Soils surrounding existing building in Lot 2 constructed on fill platform. Used for car storage.	Heavy Metals, TPH, BTEX, PAH, OC/OPP, asbestos	Inhalation, dermal contact, ingestion	Site users, services maintenance and construction workers	Possible risk from historical fill and leaking motor vehicles (fuels and lubricants)

Table 3: Plausible Exposure Pathways

5.2 Field Work

Field work for the assessment was undertaken on 16 June 2022 and included:

- Site walkover to assess visible surface conditions and identify evidence of contamination, or past activities that may cause contamination;
- Twelve shallow test pits, designated TP1 to TP12, undertaken by hand tools, logged and sampled by an Engineering Geologist;
- Test pit locations were based on professional judgement with consideration of the site history and visible site features.

Engineering logs of the test pits are presented in Appendix B. The locations of the test pits are shown on Figure 2. They were obtained on site by measurements relative to existing site features Reduced levels at the test pit locations were estimated from the drawings and are shown on the logs.

Soil samples were taken from excavated test pits using disposable gloves and hand tools which were decontaminated between sampling points using Decon90 detergent and deionised water. The samples were collected in acid-rinsed 250mL glass jars and placed in an ice-chilled cooler box. Where possible asbestos containing material was observed, samples were collected and placed in sealed plastic bags.

5.3 Sample Description

Descriptions of the samples collected are summarised in Table 4.

Sample	Lot	Sample Depth (m)	Sample Location	Sample Description
TP1	4	0 - 0.1	Edge fill embankment	Topsoil/fill
TP1	4	0.2 - 0.3	Edge fill embankment	Topsoil/fill
TP2	4	0 - 0.1	Spoil from drain	Topsoil/fill
TP2	4	0.2 - 0.3	Spoil from drain	Red Clay Fill
TP3	4	0 - 0.1	Fill embankment near maintenance shed	Topsoil/fill
TP3	4	0.2 - 0.3	Fill embankment near maintenance shed	ACM*
TP4	4	0 - 0.1	Fill embankment – Class room	Topsoil/fill
TP4	4	0.2 - 0.3	Fill embankment – Class room	Red Clay Fill
TP5	4	0 - 0.1	Playing Field	Topsoil/fill
TP5 4 0.2 - 0.3 Play		Playing Field	Red Clay Fill	
TP6	4	0 - 0.1	Natural profile	Topsoil
TP7	4	0 - 0.1	Spoil from drain	Topsoil
TP8	2	0 - 0.1	Hardstand car park	Gravel Fill
TP8	2	0.2 - 0.3	Hardstand car park	Sand Fill
TP9	2	0 - 0.1	Natural profile	Topsoil
TP10	TP10 2 0 – 0.1 Fill embankment – Building		Topsoil/fill	
TP10	2	0.2 - 0.3	Fill embankment – Building	Red Clay Fill

Table 4: Sample Description

Sample	Lot	Sample Depth (m)	Sample Location	Sample Description
TP11	2	0 - 0.1	Natural profile	Topsoil
TP11	2	0.2 – 0.3	Natural profile	Sand
TP12	2	0 - 0.1	Grassed area	Red Clay Fill

Table Notes:

*

Possible Asbestos Containing Material.

A fragment of fibre cement sheeting product was observed in TP3 and submitted for asbestos analysis. An image of the sample is presented below.

5.4 Ground Conditions Encountered

A summary of the observed profiles is presented in Table 5.

uo	Depth to Base of Material Layer (m)							
Investigati	Topsoil/ Fill: dark brown, trace grass roots	Topsoil/ Fill: Sandy CLAY, trace fibro	FILL – CLAY: Sandy CLAY, red/orange	FILL – GRAVEL: Sandy GRAVEL, grey	FILL – SAND: Clayey SAND, brown	Topsoil: Clayey SILT, black, some plant roots	Marine: Clayey SAND, pale brown	
TP 1	≥0.3							
TP2	0.1		≥0.3					
TP3		≥0.3						
TP4	0.1		≥0.3					
TP5	0.1		≥0.3					
TP6						≥0.3		
TP7	≥0.3							
TP8				0.1	≥0.3			
TP9						≥0.3		
TP10	0.1		≥0.3					
TP11						0.2	≥0.3	
TP12			≥0.3					

Table 5: Subsurface Profile Summary

5.5 Laboratory Testing

Samples were transported under chain-of-custody conditions to a NATA accredited specialist chemical testing laboratory, to be tested for the following suite of common contaminants:

- Polycyclic Aromatic Hydrocarbons (PAH)
- Total Petroleum Hydrocarbons (TPH)
- Benzene, Toluene, Ethyl-benzene, Xylenes (BTEX)
- Organochlorine and organophosphorus pesticides (OC/OPs)
- Heavy metals (arsenic, cadmium, chromium, cobalt, copper, lead, mercury, and zinc)
- Asbestos identification in accordance with AS4964; and
- Soil pH, total organic carbon content (TOC), cation exchange capacity (CEC) and electrical conductivity (EC) for the purposes of determination of ecological investigation levels (see Section 5.6).

The results are presented in Appendix C. A summary table of the results comparing them to the adopted guidelines is also presented in Appendix C.

5.6 Quality Control

Samples were obtained using industry accepted protocols for sample treatment, preservation, and equipment decontamination. A duplicate soil sample of TP9 (0 - 0.1m) was submitted to the laboratory for analysis as DP1.

The Relative Percent Differences (RPDs) were calculated for the duplicate sample and presented in the results summary table in Appendix B. RPD were less than 40%.

In addition to the field QC procedures, the laboratory conducted internal quality control testing including surrogates, blanks, and laboratory duplicate samples. The results are presented with the laboratory test results in Appendix B.

On the basis of the results of the field and laboratory quality control procedures and testing the data is considered to reasonably represent the concentrations of contaminants in the soils at the sample locations at the time of sampling and the results can be adopted for this assessment.

5.7 Analysis Results

An appraisal of the laboratory test results presented in Appendix C is provided below with reference to the adopted soil investigation and screening levels discussed in Section 2.

• EILs are site specific and are determined by calculating an Ambient Background Concentration (ABC) and an Added Contaminant Limit (ACL) for the site. ABC values were adopted using results from soil sample TP6 in the northern east undisturbed area of the site. EILs are presented in the Summary Table in Appendix C and summarised in Table 6:

Analyte	ABC – TP6 (mg/kg)	EIL – Aged Residential/Open Space Landuse (mg/kg) - Lot 4	EIL – Aged Commercial Landuse (mg/kg) – Lot 2
Copper	71	200	250
Arsenic	22	100	160
Lead	15	1100	1800
Nickel	24	280	480
Chromium (III)	62	260	390
Zinc	14	230	350

Table 6: EILs Summary (With Reference to NEPM, Schedule B1)

5.8 HIL A – Lot 4 (School Site)

- Concentrations of heavy metals exceeded the calculated EIL for chromium in four samples and zinc in one sample. Each of these samples were taken from the fill mound where red clay was present. Speciation testing was undertaken on the elevated total chromium samples confirmed the chromium valence present as Chromium (III). It is noted that red clay soils in the Port Macquarie area are naturally enriched in heavy metals including Chromium (III);
- Concentrations of heavy metals were above the laboratory limit of reporting (LOR), but were below adopted health investigation criteria for a residential site;

- Concentrations of PAH hydrocarbons were below the LOR in all samples analysed;
- Concentrations of BTEX and PCB contaminants were below the LOR in all samples analysed;
- Concentrations of pesticide contaminants were below the LOR in all samples analysed; and
- Asbestos (chrysotile) was detected in a sample of fibre cement sheeting encountered at TP3: 0.2 0.3m in Lot 4, near the maintenance sheds. The origin of the fibre cement fragment is not known but may be from a previous demolished structure on site, or, within fill imported to site.

5.9 HIL D – Lot 2 (Proposed Commercial Site)

- Concentrations of heavy metals were less than the calculated EIL's;
- Concentrations of heavy metals were above the laboratory limit of reporting (LOR), but were below adopted health investigation criteria for a commercial site;
- Concentrations of PAH hydrocarbons were below LOR in all samples analysed;
- Concentrations of BTEX and PCB contaminants were below LOR in all samples analysed; and
- Concentrations of pesticide contaminants were below LOR in all samples analysed.

6 ASSESSMENT AND CONCLUSIONS REGARIDNG SITE CONTAMINATION

A Stage 1 Site Contamination Assessment was undertaken to assess past and present potentially contaminating activities and contamination types and evaluate the site's suitability for residential use from a contamination perspective.

6.1 Summary

Based on the results outlined in this report the following points and recommendations are made:

- Site soils at several locations in Lot 2 exceeded heavy metal (chromium and zinc) ElLs and plant growth may therefore be restricted in these areas. However, it is noted that soils in the Port Macquarie area are naturally enriched in heavy metals and unlikely to pose a risk to the locally adapted ecosystems;
- Trace of asbestos containing material was present within the fill near the school maintenance sheds as shown in Figure 2. An asbestos register and an asbestos management plan must be prepared for the site in accordance with the NSW WorkCover Code of Practice (How to Manage and Control Asbestos in the Workplace). Removal and disposal of any asbestos containing material must be undertaken in accordance with the NSW WorkCover Code of Practice (How to Safely Remove Asbestos) which would include preparation of an asbestos removal control plan by a licensed asbestos removalist;
- Should any existing fill require removal off-site, it will require assessment for a Resource Recovery Exemption under Part 9, Clauses 91 and 92 of the Protection of the Environment Operations (Waste) Regulation 2014 in accordance with the Resource Recovery Order under Part 9, Clause 93 of the Protection of the Environment Operations (Waste) Regulation 2014 – the Excavated Natural Material (ENM) Order 2014;
- Considering the age of some of the buildings present on site there is the potential for asbestos type building materials to have been used in their construction. Prior to any site demolition works a hazardous material inspection should therefore be undertaken to determine if hazardous materials including asbestos are present.

6.2 Conclusion

Based on the results obtained in this investigation Lot 4 is considered likely to be suitable for primary school land use with regard to the presence of soil contamination provided the recommendations and advice of this report are adopted, specifically with regards to the presence of asbestos encountered near the maintenance sheds and site preparation works are conducted in accordance with appropriate site management protocols and legislative requirements. Further investigations by a suitably accredited environmental professional is recommended to assess the extent of ACM in the vicinity of the maintenance sheds.

Based on the results obtained in this investigation Lot 2 is considered likely to be suitable for commercial land use with regard to the presence of soil contamination provided the recommendations and advice of this report are adopted and site preparation works are conducted in accordance with appropriate site management protocols and legislative requirements.

Should potential evidence of site contamination be identified during development activities, such as soil staining, odours or possible asbestos cement sheeting, then a site contamination specialist should be contacted for advice without delay.

7 LIMITATIONS

This report comprises the results of an investigation carried out for a specific purpose and client as defined in the document. The report should not be used by other parties or for purposes or projects other than those assumed and stated within the report, as it may not contain adequate or appropriate information for applications other than those assumed or advised at the time of its preparation. The contents of the report are for the sole use of the client and no responsibility or liability will be accepted to any third party. The report should not be reproduced either in part or in full, without the express permission of Regional Geotechnical Solutions Pty Ltd.

Contaminated site investigations are based on data collection, judgment, experience, and opinion. By nature, these investigations are less exact than other engineering disciplines. The findings presented in this report and used as the basis for the recommendations presented herein were obtained using normal, industry accepted practises and standards. To our knowledge, they represent a reasonable interpretation of the general condition of the site. Under no circumstances, however, can it be considered that these findings represent the actual state of the site at all points.

Recommendations regarding ground conditions referred to in this report are estimates based on the information available at the time of its writing. Estimates are influenced and limited by the fieldwork method and testing carried out in the site investigation, and other relevant information as has been made available. In cases where information has been provided to Regional Geotechnical Solutions for the purposes of preparing this report it has been assumed that the information is accurate and appropriate for such use. No responsibility is accepted by Regional Geotechnical Solutions for inaccuracies within any data supplied by others.

If site conditions encountered during construction vary significantly from those discussed in this report, Regional Geotechnical Solutions Pty Ltd should be contacted for further advice.

This report alone should not be used by contractors as the basis for preparation of tender documents or project estimates. Contractors using this report as a basis for preparation of tender documents should avail themselves of all relevant background information regarding the site before deciding on selection of construction materials and equipment.

If you have any questions regarding this project, or require any additional consultations, please contact the undersigned.

For and on behalf of

Regional Geotechnical Solutions Pty Ltd

lems

Tim Morris Associate Engineering Geologist

Figures

Regional Geotechnical Solutions RGS20683.1-AC_Rev1 15 August 2022

Figure 4 - Current and proposed zoning map (Source: Planning Proposal)

Based on Council website information

Client:	ALAN TAYLOR CIVIL	Job No.	RGS20683.1
Project:	PROPOSED REZONING Sc 11-33 MUMFORD STREET, PORT MACQUARIE		DS
			NTS
			27-Jul-22
Title:	INVESTIGATION LOCATION PLAN	Figure No.	1

REGIONAL GEOTECHNICAL SOLUTIONS Client: ALAN TAYLOR CIVIL Project: PROPOSED REZONING 11-33 MUMFORD STREET, PORT MACQUARIE Title: 1954 AEPIAL IMAGE					
REGIONAL GEOTECHNICAL SOLUTIONS Client: ALAN TAYLOR CIVIL Project: PROPOSED REZONING 11-33 MUMFORD STREET, PORT MACQUARIE		and and form	and the second	Top the	13
REGIUNAL GEOTECHNICAL SOLUTIONS Project: PROPOSED REZONING 11-33 MUMFORD STREET, PORT MACQUARIE 11-33 MUMFORD STREET, PORT MACQUARIE	Client:	ALA	N TAYLOR CIVIL		
SOLUTIONS 11-33 MUMFORD STREET, PORT MACQUARIE	Project:	PROP	OSED REZONING		
			D STREET PORT MAC	QUARIE	
	Title	105/			

		Farmhouse within site
	Client:	ALAN TAYLOR CIVIL
	Project:	PROPOSED REZONING
SULUTIONS	Title:	1975 AFRIAL IMAGE

Figure No.	4
Date:	26-Jul-22
Scale:	NTS
Drawn By:	DS
Job No.	RG\$20683.1

		Farmhouse demolished and filling works being undertaken	
			ないので、「「「「「「「「」」」」」」
			というというという
	Client:	ALAN TAYLOR CIVIL	
REGIONAL	Project:	PROPOSED RETONING	
GEOTECHNICAL			
		11-33 MUMFORD STREET, PORT MACQUARIE	
	Title:	1981AERIAL IMAGE	

		School buildings present in Lot 4 and large building present in Lot 2
,		
	Client:	ALAN TAYLOR CIVIL
	Project:	PROPOSED REZONING
SOLUTIONS	·	11-33 MUMFORD STREET, PORT MACQUARIE
	Title:	1989 AERIAL IMAGE

1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		
	44	
ale y		
RATING .		
10		
7 1		
	-1-7	
Hard Internet		
10		
R. L. J.	in the second	
5 F 8.71	57 10	
	T.A.	
Mr. 7.8	A.	
1 5 Marine	Sec. 1	
atter for	200	
The sta	15	
A A A A	and the second	
AND STA	al	
and the last	17 A	
S. Ang	and a	
1.38	and	
	and freedom	
	Job No.	RGS20683.1
	Drawn By:	DS NITS
	Date:	26-Jul-22
	Figure No	6

1991 AERIAL IMAGE

Title:

Figure No.	7
Date:	26-Jul-22
Scale:	NTS
Drawn By:	DS
Job No.	RGS20683.1

DP 10 27)82765 S	De 1128367 8 107 105 105 105 105
	HUGHES PL	G DP 855 159 DP 1065 98 7
CO CO CO CO CO CO CO CO CO CO CO CO CO C		DP 80 MUMFORD STREET DP 825704 4
1:2,257 25 DP4123026 0 30 60m		DP 1064250 67 DP 1251481 70 DP 1251481 70 DP 1251481 70 DP 127781 60 DP 127781 60 DP 127781 60 DP 127781 60 DP 127781 70 0 DP 127781 60 DP 127781 70 0 0 DP 1257781 70 0 0 DP 1257781 70 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	Client: Project:	ALAN TAYLOR CIVIL
GEOTECHNICAL		PROPOSED REZONING
		11-33 MUMFORD STREET, PORT MACQUARIE
	litle:	2012 SATELLITE IMAGE

Drawn By: DS Scale: NTS Date: 26-Jul-22 Figure No. 8		
Drawn By: DS Scale: NTS Date: 26-Jul-22	Figure No.	8
Drawn By: DS Scale: NTS	Date:	26-Jul-22
Drawn By: DS	Scale:	NTS
	Drawn By:	DS
Job No. RGS20683.1	Job No.	RGS20683.1

	<image/>	
Client:	ALAN TAYLOR CIVIL	
Project:	PROPOSED REZONING	
Title	11-33 MUMFORD STREET, PORT MACQUARIE	
	2022 SATELLITE IMAGE	_

Figure No.	9
Date:	26-Jul-22
Scale:	NTS
Drawn By:	DS
Job No.	RG\$20683.1

Appendix A

Site History Documentation

Regional Geotechnical Solutions RGS20683.1-AC_Rev1 15 August 2022

ADVANCE LEGAL SEARCHERS PTY LTD

(ACN 147 943 842) ABN 82 147 943 842

18/36 Osborne Road, Manly NSW 2095 Mobile: 0412 169 809 Email: search@alsearchers.com.au

10th June, 2021

REGIONAL GEOTECHNICAL SOLUTIONS PTY LTD 1/12 Jindalee Road, **PORT MACQUARIE, NSW, 2444**

Attention: Grant Colliar,

RE:	11 and 33 Mumford Street,
	Port Macquarie
	RGS20683.1

Note 1:	Lot 2	DP 601094	(page 1)
Note 2:	Lot 4	DP 825704	(page 4)

Note 1:

Current Search

Folio Identifier 2/601094 (title attached) DP 601094 (plan attached) Dated 09th June, 2022 Registered Proprietor: **GANTONS PTY LTD** (ACN 003 088 453)

Title Tree Lot 2 DP 601094

Folio Identifier 2/601094

Certificate of Title Volume 13881 Folio 46

Certificate of Title Volume 10228 Folio 208

Certificate of Title Volume 1726 Folio 39

Index

T – Transfer CN – Change of Name ND – Notice of Death TA – Transmission Application

Summary of proprietor(s) Lot 2 DP 601094

Year

Proprietor(s)

	(Lot 2 DP 601094)	
09 Nov 2016 –	Gantons Pty Ltd (ACN 003 088 453)	Т
todate		
31 Aug 1988	Christian Outreach Centre (ARBN 008 388 092)	
	(Lot 2 DP 601094 – CTVol 13881 Fol 46)	
05 Nov 1985	Australian Christian Outreach Centre Limited	Т
25 Jul 1984	Geoffrey Mark Hammond	Т
	Elaine Dawn Hammond	
01 Feb 1984	Christopher Francis McCarron	
	Frederick James Cahill	
	(Part Portion 233 Parish Macquarie – CTVol 10228 Fol 208)	
11 Aug 1977	Charles Bruce Thomas, electrical contractor	Т
07 Apr 1975	Susan Maria Marchant, wife of David Durack Marchant	CN
14 Nov 1974	Susan Maria Nicholls, widow	ND
01 Mar 1972	Roger Philip Nicholls, veterinary surgeon	Т
	Susan Maria Nicholls, his wife	
30 Apr 1970	Patricia Maria Shelton, widow	ND
08 Feb 1966	Alfred Henry Shelton, agent	
	Patricia Maria Shelton, his wife	
	(Part Portion 233 Parish Macquarie – Area 10 Acres – CTVol	
	1726 Fol 39)	
14 Dec 1965	Alfred Henry Shelton, agent	Т
	Patricia Maria Shelton, his wife	
23 Jun 1959	William Charles Raddatz, retired farmer	TA
01 May 1953	Alice Raddatz, married woman	Т
08 Sep 1938	Edward Francis Grace, retired dairy farmer	Т
04 Nov 1909	Eli Sonter, labourer	Т
03 Oct 1906	Leslie George Wilson, millhand	

Note 2:

Current Search

Folio Identifier 4/825704 (title attached) DP 825704 (plan attached) Dated 09th June, 2022 Registered Proprietor: **HASTINGS ASSOCIATION FOR CHRISTIAN EDUCATION LIMITED**

Title Tree Lot 4 DP 825704

Folio Identifier 4/825704

(a)

(b)

Folio Identifier 3/734414 Folio Identifier 4/734414

Certificate of Title Volume 1697 Folio 210

Index

T – Transfer CN – Change of Name ND – Notice of Death TA – Transmission Application

Summary of proprietor(s) Lot 4 DP 825704

Year

Proprietor(s)

	(Lot 4 DP 825704)	
16 Nov 1992 –	Hastings Association for Christian Education Limited	
todate		

See Notes (a) & (b)

Note (a)

	(Lot 3 DP 734414)	
08 Feb 1990	Hastings Association for Christian Education Limited	Т
08 Jul 1986	Errol Edwin Stein, business proprietor	
	Jean Margaret Stein, his wife	
	(Part Portion 233 Parish Macquarie – Area 10 Acres – CTVol	
	1697 Fol 210)	
09 Jul 1980	Errol Edwin Stein, business proprietor	Т
	Jean Margaret Stein, his wife	
02 Jan 1975	Cove House Australia Pty Limited	CN
25 Sep 1973	Tapago Pty Limited	Т
01 Feb 1973	Celia Patricia Mumford, spinster	TA
04 Jan 1944	Stella Rebecca Pearl Mumford, married woman	Т
20 Jun 1906	Florence May Westley, wife of Richard Charles Edgar Westley,	Т
	labourer	

Note	(b)
11010	(\mathbf{v})

	(Lot 4 DP 734414)	
05 Aug 1986	Hastings Association for Christian Education Limited	Т
08 Jul 1986	Errol Edwin Stein, business proprietor	
	Jean Margaret Stein, his wife	
	(Part Portion 233 Parish Macquarie – Area 10 Acres – CTVol	
	1697 Fol 210)	
09 Jul 1980	Errol Edwin Stein, business proprietor	Т
	Jean Margaret Stein, his wife	
02 Jan 1975	Cove House Australia Pty Limited	CN
25 Sep 1973	Tapago Pty Limited	Т
01 Feb 1973	Celia Patricia Mumford, spinster	TA
04 Jan 1944	Stella Rebecca Pearl Mumford, married woman	Т
20 Jun 1906	Florence May Westley, wife of Richard Charles Edgar Westley,	Т
	labourer	

Appendix B

Results of Field Investigations

Regional Geotechnical Solutions RGS20683.1-AC_Rev1 15 August 2022

REGIONAL GEOTECHNICAL SOLUTIONS REGIONAL CLIENT: PROJECT NA								G LOG - TEST PIT				Т	EST	PIT N	io: TP1
	4			. c	LIENT	:		Alan Taylor Civil				P	AGE		1 of 1
		SOLUTIO	INICA	L P	ROJE		ME:	Proposed Rezoning				J	ови	NO:	RGS20683.1
				s	ITE LC	CATI	ON:	Lot 2 DP60194 Part Lot 4	DP825704	4		L	ogo	ED B	Y: GC
				т	EST L	OCAT	ION:	Mumford Street - Port Mad	cquarie			D	ATE	:	16/6/22
╞			c .	Hand	Tools			EA	STING	199703	m (DI ·	1.6 m
T	EST		E. H:	Tianu	W	IDTH:		NO	RTHING:	6522691	m [DATU	40E M:	NL.	AHD
⊢	Exc	avation and S	ampling					Material description and profile inf	ormation				Field	d Test	
						Z						۲			
Ę	; H		RL	DEPTH	UHC DHC	CATI	м	ATERIAL DESCRIPTION: Soil tvr	pe. plasticity	/particle	TURE		Гуре	ult	Structure and additional observations
1 HET	MAI L	SAMPLES	(m)	(m)	LO	SSIF		characteristics,colour,minor	components	5		DEN	Fest .	Res	
						CLA					20	ö			
I I	ered				\mathbb{X}	SC		FILL: Clayey SAND, fine to med brown, traces of grass roots to 5	lium grained imm	, dark	М				FILL/TOPSOIL
	ount	ES	-		\bigotimes										
	tEnc	0.10m	-		\bigotimes	>									
	Ž	0.1011	.		\bigotimes										
					\bigotimes	>	0.15m								
			-	-	\mathbb{X}	SC		FILL: Clayey SAND, fine to med brown	lium grained	, dark					
		0.20m	1.4	0.2	\bigotimes										
			.		\bigotimes	>									
		ES			\mathbb{X}	>									
	_	0.30m			××		0.30m								
			-		-			Hole Terminated at 0.30 m							
			-		-										
			1.2	0.4											
			-		1										
			-		-										
			-												
			-		1										
			1.0_	0.6	1										
			-		-										
,															
			-]]										
			-		-										
			-		-										
			0.8	0.8											
,															
			-		1										
			-		-										
			-												
			-		1										
-	EGENI):		Notes, Sa	mples a	 nd Tes	ts.			Consister	ncy			CS (kPa	a) Moisture Condition
M	/ater			U ₅₀	50mm	n Diame	eter tub	e sample		VS Ve S Se	ery Soft oft		<2 25	25 5 - 50	D Dry M Moist
-	≝ W (C	ater Level ate and time s	hown)	CBR	Bulk s	ample	for CBF	R testing		F Fi	rm		50) - 100	W Wet
	— w	ater Inflow	ĺ	ASS	Acid S	Sulfate S	ai samp Soil Sa	mple		VSt Ve	ery Stiff		20	,0 - 200)0 - 400	W _L Liquid Limit
s	- √ W trata C	ater Outflow hanges		В	Bulk S	Sample				H Ha <u>Fb</u> Fr	ard iable		>4	100	
_		Gradational or	!	Field Test PID	ts Photo	ionisati	on dete	ector reading (ppm)		Density	V	Ve	ery Lo oose	oose	Density Index <15% Density Index 15 - 35%
_		ransitional stra Definitive or di	ata stict	DCP(x-y)	Dynar	nic pen	etrome	eter test (test depth interval shown)			ME) M	edium	n Dense	Density Index 35 - 65%
		strata change		нΡ	Hand	Penetro	ometer	test (UCS KPa)			D	D	ense	anco	Density Index 65 - 85%

Γ				E	INGI	NEE	RIN	IG LOG - TEST PIT				Т	EST	PIT N	o: TP2
	-			, c	LIENT	:		Alan Taylor Civil				P	AGE		1 of 1
		SOLUTIO)NS	L P	ROJE	CT NA	ME:	Proposed Rezoning				J	ови	NO:	RGS20683.1
				s	ITE LC	CATI	ON:	Lot 2 DP60194 Part Lot 4	DP82570	4		L	ogo	SED B	Y: GC
				т	EST L	CAT	ION:	Mumford Street - Port Ma	cquarie			D	ATE	:	16/6/22
╞				Hand	Tools			EA	STING	199701				DI ·	2.0 m
1	EST	PIT LENGT	с. Н:	Tianu	W	IDTH:		NC	RTHING:	6522654	m [DATU	чое И:	NL.	AHD
	Exc	avation and S	Sampling					Material description and profile in	formation				Fiel	d Test	
	Τ					N						۲			
	; ¥		RL	DEPTH	UHC DHC	CATI	М	IATERIAL DESCRIPTION: Soil tv	pe. plasticity	/particle	TURE		Lype	ult	Structure and additional observations
1 H H H H		SAMPLES	(m)	(m)	LO	SSIFI		characteristics, colour, minor	components	S		DENS	Fest	Res	
						CLA					20	ö			
Ē	Pred				\mathbb{X}	SC		FILL: Clayey SAND, fine to meet brown, traces of grass roots to start	Jium grained 5mm	l, dark	D				FILL/TOPSOIL
	ount	ES			\bigotimes	,									
	+ Enc	0 10m	-		\bigotimes		0.10m								
	Z	0.1011	1.		\bigotimes	СН	0.1011	FILL: Sandy CLAY, medium to	high plasticit	y,	Š	Fr/			FILL-CLAY
					\mathbb{K}			red/orange, sand, fine to mediu	m grained		ž	vst			
				1 -	\bigotimes	*									
		0.20m	1.8	0.2	\bigotimes	,									
					\mathbb{X}	,									
		ES			\bigotimes										
	_	0.30m			<u> XXX</u>	<u> </u>	0.30m								
					-			Hole Terminated at 0.30 m							
8					-										
			1.6	0.4											
- fr			· ·		-										
					-										
2.00.4															
5				1 -	-										
			1.4	0.6	-										
P															
00000			-	1 -											
2					-										
-			.		-										
5			1.2	0.8											
b															
					-										
					-										
4															
					1										
	EGEN	 D:		Notes, Sa	mples a	nd Tes	ts			Consister	ncy			CS (kPa) Moisture Condition
<u>v</u>	later			U	50mm	Diame	ter tub	be sample		VS V	ery Soft		<2 2	25 5 - 50	D Dry M Moist
	۲ N	ater Level	hown)	CBR	Bulks	ample	for CBF	R testing		F Fi	rm		50) - 100	W Wet
	— V	ater Inflow		E ASS	Enviro Acid S	Inmenta Sulfate S	al samp Soil Sa	pie ample		St St VSt V	utt ery Stiff		10 20)0 - 200)0 - 400	W _p Plastic Límit W _L Liquid Limit
-	- 4 W trate (ater Outflow		В	Bulk S	ample				H H Fb Fr	ard riable		>2	100	
		Gradational or	. !	Field Test	ts Photo	ionieati	on dota	ector reading (ppm)		Density	V	Ve	ery Lo	ose	Density Index <15%
		transitional stra Definitive or di	ata istict	DCP(x-y)	Dynar	nic pen	etrome	eter test (test depth interval shown)			MD) M	ediun	n Dense	e Density Index 35 - 65%
2024		strata change		HP	Hand	Penetro	ometer	r test (UCS kPa)			D	D	ense	anco	Density Index 65 - 85%

Γ					E	ENGI	NEE	RIN	IG LOG - TEST PIT				Т	EST	PIT N	io: TP3
	0		REGION/		, c	LIENT	:		Alan Taylor Civil				P	AGE		1 of 1
			SOLUTIO	INICA	L P	ROJE		ME:	Proposed Rezoning				J	ови	NO:	RGS20683.1
					s	SITE LO	CATI	ON:	Lot 2 DP60194 Part Lot	4 DP82570	4		L	ogo	SED B	Y: GC
					т	EST L	OCAT	ION:	Mumford Street - Port M	acquarie			D	ATE	:	16/6/22
L	FQI	IIPN		F٠	Hand	Tools			F	ASTING	488645	5 m 🧐		4CF	RI ·	2 0 m
ŀ	TES	ST PI	T LENGT	—. Н:	Tiana	W	IDTH:		– N	ORTHING:	6522676	5 m I	DATU	M:		AHD
F	E	Excav	vation and S	ampling					Material description and profile	information				Fiel	d Test	
							NO						5			
		ER		RL	DEPTH	UHC DHC	ICATI BOL	м	IATERIAL DESCRIPTION: Soil	type, plasticity	/particle	TURE	SITY	Type	sult	Structure and additional observations
	ME	WA ⁻	SAMPLES	(m)	(m)	GRA	SSIF		characteristics,colour,mind	or component	S	SION	DEN	Test	Re	
							CLA					-0	ö			
	H	ered					CL		FILL: Sandy CLAY, low to me grey, traces of gravel, fine gra	dium plasticity ined, subroun	/, dark ded,	× ×	Fr			FILL/TOPSOIL
		count	ES	-		\bigotimes			traces of fibro			Σ				
		t Enc	0 10m	-		\bigotimes										
		No	0.1011	_			×									
						\bigotimes	>									
				-		\mathbb{X}	>									
			0.20m	1.8_	0.2	\otimes										
				.		\bigotimes	>									
			ES			\mathbb{X}	>									
			0.30m			\bowtie	>	0.30m								
				-		1			Hole Terminated at 0.30 m							
8				-		-										
				1.6	0.4											
11100				-		1										
00-440						-										
0.00.2 0				-												
- 00				-	-	1										
				1.4	0.6	-										
				-		-										
5																
20.000				-]]										
				-		1										
				-		-										
4				1.2	0.8											
<i>b</i>																
5				-		1										
5				-		-										
4				-												
-				-	1 -	1										
	LEG	END:			Notes, Sa	mples a	nd Tes	ts			Consiste	ency		<u>U</u>	CS (kPa	a) Moisture Condition
1	Wate	er			U.50	50mm	Diame	eter tub	be sample		VS V S S	/ery Soft Soft		<2 25	25 5 - 50	D Dry M Moist
	≝	Wat (Dat	er Level te and time s	hown)	CBR	Bulks	ample	for CBI	R testing		FF	Firm		50) - 100	W Wet
	-	Wat	er Inflow		⊨ ASS	Enviro Acid S	Sulfate \$	ai sam Soil Sa	pie ample		St S VSt N	Jun Very Stiff		10 20	iu - 200)0 - 400	W _p Plastic Limit W _L Liquid Limit
	∢ Strat	Wat a Cha	er Outflow		В	Bulk S	Sample				H H Fb F	Hard ⁻riable		>2	100	
		G	radational or	. !!	Field Tes	ts Photo	ionisati	on deta	ector reading (ppm)		Density	V	Ve	ery Lo	ose	Density Index <15%
200		tra _ De	ansitional stra efinitive or di	ata stict I	DCP(x-y)	Dynar	nic pen	etrome	eter test (test depth interval shown)		ME	D M	ediun	n Dense	Density Index 15 - 55%
2 2.00		st	rata change		ΗP	Hand	Penetro	ometer	r test (UCS kPa)			D		ense erv D	anco	Density Index 65 - 85%

ENGINEERING LOG - TEST PIT	TEST PIT NO: TP4
REGIONAL CLIENT: Alan Taylor Civil	PAGE: 1 of 1
SOLUTIONS PROJECT NAME: Proposed Rezoning	JOB NO: RGS20683.1
SITE LOCATION: Lot 2 DP60194 Part Lot 4 DP825704	LOGGED BY: GC
TEST LOCATION: Mumford Street - Port Macquarie	DATE: 16/6/22
FOLLIPMENT TYPE: Hand Tools FASTING: 488614 m	SUBFACE RI: 30 m
TEST PIT LENGTH: WIDTH: NORTHING: 6522698 m	DATUM: AHD
Excavation and Sampling Material description and profile information	Field Test
Z	- 20
이 산 Samples RL DEPTH 문양 양 MATERIAL DESCRIPTION: Soil type, plasticity/particle	O N </td
$\begin{bmatrix} I \\ W \\ W \end{bmatrix} = \begin{bmatrix} SAWPLES \\ M \\ W \end{bmatrix} = \begin{bmatrix} M \\ M \\ M \end{bmatrix} = \begin{bmatrix} M \\ W \\ M \\ M \end{bmatrix} = \begin{bmatrix} M \\ W \\ W \\ M \\ M \end{bmatrix} = \begin{bmatrix} M \\ W \\ W \\ M \\ M \end{bmatrix} = \begin{bmatrix} M \\ W \\ W \\ M \\ M \\ M \end{bmatrix} = \begin{bmatrix} M \\ W \\ W \\ M \\$	
북 👸	FILL/TOPSOIL
ES T Subrounded ≥	≥
CI FILL: Sandy CLAY, medium plasticity, dark brown,	FILL-CLAY
0.30m 0.30m Hole Terminated at 0.30 m	
2.6 0.4	
LEGEND: Notes, Samples and Tests Consistency	UCS (kPa) Moisture Condition
Water VS Very S ▼ Water Level U ₅₀ 50mm Diameter tube sample S S oft	25 - 50 M Moist
CBR Bulk sample for CBR testing F Firm (Date and time shown) E Environmental sample St Stiff	50 - 100 W Wet 100 - 200 W _p Plastic Limit
► Water Inflow ASS Acid Sulfate Soil Sample VSt Very S ✓ Water Outflow B Builk Sample UI Hord	Stiff 200 - 400 W [×] _L Liquid Limit
Strata Changes	
Gradational or Preio lests Density	
transitional strata PID Photoionisation detector reading (ppm)	e Very Loose Density Index <15% L Loose Density Index 15 - 35%

Γ					E	INGI	NEE	RIN	IG LOG - TEST P	IT			Т	EST		10: TP5					
	4		REGIONA		. c	LIENT	:		Alan Taylor Civil				P	AGE		1 of 1					
	á		SOLUTIO	NS	P	ROJE		ME:	Proposed Rezoning				J	ови	NO:	RGS20683.1					
					s	ITE LC	CATI	ON:	Lot 2 DP60194 Part	Lot 4 DP82570	4		L	ogo	SED B	SY: GC					
					т	EST LO	OCAT	ION:	Mumford Street - Po	rt Macquarie			D	ATE	:	16/6/22					
╞				E .	Hond	Toolo				EASTING	100557				ы.	1 2 m					
1	EST		T LENGT	c. H:	папи	W	IDTH:			NORTHING:	6522733	m I		чсе M:	RL.	AHD					
	Exc	cava	ation and S	ampling	1				Material description and pro	ofile information				Fiel	d Test						
							z						~								
G	2 8	Ľ		RI	DEPTH	UHC I	CATIC	м	ATERIAL DESCRIPTION :	Soil type plasticity	/narticle	URE	LENC 1	ype	Ħ	Structure and additional					
		I A A	SAMPLES	(m)	(m)	LOC	SSIFI		characteristics,colour,	minor component	s		NSIS ⁻	est T	Res	Observations					
	: -						CLA					≥õ	0								
Ĕ	5	E E				\boxtimes	CL		FILL: Sandy CLAY, low pl	asticity, dark brow	vn,	Š	Fr			FILL/TOPSOIL					
	- inte	nuife	ES		-	\bigotimes	>		laces of grass roots			ž									
		5			1 -	\mathbb{X}	×														
	To N	й N	<u>0.10m</u>	1. <u>2</u>	-	×	> CI	0.10m	FILL: Sandy CLAY, mediu	um plasticity, red, s	sand,					FILL-CLAY					
						\bigotimes			fine to medium grained		,										
					-	\bigotimes	*														
		4	0.20m		0.2		×														
					-	\bigotimes	*														
			ES		-	\mathbb{K}	*														
			0.30m	1.0	-	\bigotimes	*	0.30m													
					-				Hole Terminated at 0.30 n	n											
					-																
-					-	1															
0.00					0.4	-															
					1.																
					-																
				0.8	-	1															
8					-	-															
<u>i</u>					1.																
5					0.6																
					0.0	1															
					-	-															
P					1.																
				0.6	-																
					-	1															
					-	-															
					0.8																
5					-																
, ,					-	1															
5				0.4	-	-															
				0.4	1 _																
					-																
1000					-	1															
	EGEN				Notes, Sa	mples a	nd Tes	ts			Consisten	CV			CS (kP;	a) Moisture Condition					
<u>v</u>	Vater					a		<u></u>			VS Ve	ery Soft		<2	25	D Dry					
	⊈ v	Vate	r Level		U₅₀ CBR	oumm Bulk s	ample 1	for CB	e sample R testing		F Fi	n rm		25 50	5 - 50) - 100	W Wet					
	v	Nate	; and urne sr r Inflow	iown)	E ASS	Enviro Acid S	nmenta	al samı Soil Sa	ple Imple		St St VSt Ve	iff ery Stiff		10 20)0 - 200)0 - 400	W _p Plastic Limit					
-	- ∢ v	Vate	r Outflow		В	Bulk S	Sample					ard		>2	100						
<u>s</u>	trata (Gr	nges adational or		Field Test	ts			, <u>, , , , ,</u>		Density	V	Ve	ery Lo	ose	Density Index <15%					
		tra	nsitional stra	ata	PID DCP(x-y)	Photo Dynar	ionisatio nic pen	on dete etrome	ector reading (ppm) eter test (test depth interval sh	iown)		L ME	Lo D M	oose ediun	n Dense	Density Index 15 - 35% e Density Index 35 - 65%					
		stra	ata change	Saot	HP	Hand	Penetro	ometer	test (UCS kPa)	r test (test depth interval shown) st (UCS kPa)						MD Medium Dense Density Index 35 - 65% D Dense Density Index 65 - 85%					

Γ					E	NGI	NEE	RIN	G LOG - 1	FEST PI	Т			т	EST	PIT N	io: TP	6
			REGIONA		, c		:		Alan Taylor	Civil				Р	AGE	:	1 of	1
			SOLUTIO	INICA	L P	ROJE	CT NA	ME:	Proposed F	Rezoning				J	овι	NO:	RGS	20683.1
					s		CATI	ON:	Lot 2 DP60	194 Part L	ot 4 DP8257	04		L	ogo	GED B	Y: GC	
					т	EST L	OCAT	ION:	Mumford St	treet - Port	Macquarie			D	ATE	:	16/6/	22
\mathbb{L}	FOI			E٠	Hand	Tools					FASTING	488544	m	SURF	ACE	RI ·	1 0 m	
ŀ	TES	ST PI	T LENGT	н:	Tiana	W	IDTH:				NORTHING:	6522754	m I	DATU	M:		AHD	
F	E	xcav	vation and S	ampling					Material descrip	tion and prof	ile information				Fiel	d Test		
							NO							5				
		ER		RL	DEPTH		BOL	м	ATERIAL DESC	RIPTION: S	oil type, plasticit	v/particle	TURE	SITY SITY	Type	int i	Structure and observ	d additional ations
	ME I	WA	SAMPLES	(m)	(m)	GRAI	ASSIF SYM		characteris	stics,colour,n	ninor componen	its		DEN	Test .	Re		
							CLA							ö	Ċ			
	¥	ered					MH		TOPSOIL: Cla	yey SILT, bla	ack, some plant	roots	W	Fr			TOPSOIL	
		count	ES	· ·														
		t Enc	0 10m			\longrightarrow												
		No	0.1011	· .														
				· ·		>>>												
				0.8	0.2													
						K												
						>>>												
					-) XX		0.30m										
						-			Hole Terminate	ed at 0.30 m								
3						-												
				0.6	0.4													
						-												
2.00.4				.		-												
5						1												
				0.4	0.6	1												
						-												
200																		
00000																		
						1												
						-												
4				0.2	0.8													
- 7)																		
5						1												
				.		+												
				.		-												
					1 -	1												
	LEG	END:			 Notes, Sa	mples a	nd Tes	ts				Consiste	ncy	1	U	CS (kPa	a) Moisture Cor	ndition
	Wate	er N			U ₅₀	50mm	n Diame	eter tub	e sample			VS V S S	/ery Sofi Soft	t	<2 25	25 5 - 50	D Dry M Moist	i
	₹	Wat (Dat	er Level te and time s	hown)	CBR	Bulk s	ample f	for CBF	R testing			F F	irm		50) - 100	W Wet	ic Limit
	►	Wat	er Inflow	ĺ	ASS	Acid S	Sulfate S	Soil Sa	mple			VSt V	/ery Stiff	f	20)0 - 200)0 - 400		d Limit
	◀ <u>Str</u> af	Wat <u>a C</u> ha	er Outflow anges		В	Bulk S	ample					H H Fb F	lard riable		>4	100		
- 19		G	radational or		Field Test PID	t <u>s</u> Photo	ionisatio	on dete	ector reading (pon	n)		Density	V	V	ery Lo bose	oose	Density Index Density Index	<15% 15 - 35%
		tra _ De	ansitional stra efinitive or di	ata stict	DCP(x-y)	Dynar	nic pen	etrome	eter test (test dept	h interval sho	wn)		M	D M	ediun	n Dense	Density Index	35 - 65%
24		st	rata change		п٢	rand	renetro	Juneter	iesi (UCS KPa)					ט ע נ	ense anv D	onco	Density Index	00-05% 95 100%

	REGIONAL GEOTECHNICAL ENGINEERING LOG - TEST PIT TEST PIT NO: TP7 CLIENT: Alan Taylor Civil PAGE: 1 of 1 PROJECT NAME: Proposed Rezoning JOB NO: RGS20683 1														
	4	REGIONA		, c		:		Alan Taylor Civ	il			Р	AGE	:	1 of 1
		SOLUTIO	INICA	L P	ROJE	CT NA	ME:	Proposed Rezo	oning			J	ов	NO:	RGS20683.1
				s	ITE LO	CATI	ON:	Lot 2 DP60194	Part Lot 4 DP8257	04		L	.OGG	GED B	Y: GC
				т	EST L	OCAT	ION:	Mumford Street	t - Port Macquarie			D	ATE		16/6/22
FC			E.	Hand	Tools				FASTING	48873	0 m 9	SURF		RI ·	1.8 m
TE	ST P		—. Н:	Tiana	W	IDTH:			NORTHING	652271	3 m l	DATU	M:		AHD
	Excav	ation and S	ampling					Material description a	and profile information				Fiel	d Test	
						NO						5			
Ę	ER		RL	DEPTH		BOL	м	IATERIAL DESCRIP	TION: Soil type, plastic	ity/particle	TURE	SIT N	Type	sult	Structure and additional observations
METI	WA	SAIVIPLES	(m)	(m)	GRAI	SSIF		characteristics,	colour,minor compone	nts		DEN	Lest .	Res	
						CLA					-0	ö			
HA	ered				\bigotimes	SC		FILL: Clayey SANE brown, traces of gra), fine to medium grain ass roots	ed, dark	М				FILL/TOPSOIL
	count	ES			\bigotimes										
	t Enc	0.10m			\bigotimes	>									
	Ž	0.1011	· .		\bigotimes	>									
					\bigotimes	>									
			· ·		\mathbb{X}	>									
			1.6	0.2	\bigotimes										
			.		\bowtie										
					\bigotimes	>									
	<u> </u>		-	-	\boxtimes	>	0.30m								
					-			Hole Terminated at	0.30 m						
8					-										
			1.4	0.4											
			-		1										
					-										
					-										
			.	-	1										
					-										
			1.2_	0.6	-										
P]										
					1										
					-										
			1.0	0.0											
b			1.0	0.0	1										
					-										
					1										
			.		-										
										-					
LE0	3END: ter			Notes, Sa	mples a	nd Tes	<u>ts</u>			Consist VS	<u>ency</u> Very Sof	t	<u>U</u> <2	CS (kPa 25	a) Moisture Condition D Dry
	. Wat	er Level		U₅₀ CBR	50mm Bulk s	n Diame ample f	ter tub for CBF	e sample R testing		S F	Soft Firm		25 50	5 - 50) - 100	M Moist W Wet
	(Dat - Wat	e and time sl ter Inflow	hown)	E	Enviro		al samp	ple		St	Stiff		10	00 - 200	W _p Plastic Limit
	Wat	er Outflow	'	B	Acia S Bulk S	Sample	JUI 58	unhie		H	Hard		20	- 400 400	
Stra	ata Cha	anges iradational or		Field Test	ts					Fb Density	Friable V	V	ery Lo	oose	Density Index <15%
-		ansitional stra	ata		Photo	ionisatio	on dete	ector reading (ppm)	erval shown)		L	Lo M	oose ledium	n Dense	Density Index 15 - 35%
-	— De st	etinitive or dis rata change	stict	HP	Hand	Penetro	ometer	test (UCS kPa)					ense		Density Index 65 - 85%

Γ	REGIONAL GEOTECHNICAL SOLUTIONS PROJECT N								G LOG - T	EST PI	т			Т	EST		10:	TP8
		4	REGIONA		. с	LIENT	:		- Alan Taylor	Civil				Р	AGE			1 of 1
	ź		SOLUTIO	INICA	L P	ROJE		ME:	Proposed R	ezoning				J	ові	NO:	1	RGS20683.1
					S	ITE LC	CATI	ON:	Lot 2 DP601	194 Part L	ot 4 DP82570)4		L	OGO	SED B	Y:	GC
					т	EST L	OCAT	'ION:	Mumford Str	reet - Port	Macquarie			D	ATE			16/6/22
┢	FO			Ę٠.	Hand	Tools					FASTING	48878	4 m 9	SURF	۵CF	RI ·	2.5 m	
	TES	ST PI	IT LENGT	н:	Tiana	W	IDTH:				NORTHING:	652274	6m I	DATU	M:		AHD	
	F	Excav	/ation and S	ampling					Material descripti	ion and prof	ile information				Fiel	d Test		
							NO							5				
		TER	SAMDI ES	RL	DEPTH	DHG	ICAT	M	ATERIAL DESC	RIPTION: S	oil type, plasticity	y/particle	TURE	SITY	Type	sult	Structu	re and additional bservations
	MET	WA ⁻	SAWFLES	(m)	(m)	GRA	ASSIF SYM		characterist	tics,colour,m	ninor component	ts	SIOND	DEN	Test	Re		
	_						CL							ö	Ĺ		511 0 0 0	
	HA	ered			-	\bigotimes	GP		FILL: Sandy GF subangular, gre	RAVEL, fine ∌y	to medium grai	ned,	D				FILL-GRA	VEL
		count	ES	.	-	\bigotimes	,											
		ot Enc	0.10m	2.4	-	\bigotimes	>	0.10m										
		ž		1 -	1 -		SC		FILL: Clayey S/	AND, fine to	medium graine	d, brown					FILL-SAN	D
					-	\bigotimes	×											
			0.00		-	\mathbb{X}	×											
			0.20m		0.2	\bigotimes	,											
			50		-	\bigotimes	>											
			ES	· ·	1.	\mathbb{X}	×											
\vdash	_		0.30m	2.2	+	\sim		0.30m	Hole Terminate	ed at 0.30 m								
				.		1												
200						-												
202 0.0					0.4	-												
102.0					-													
					-													
-7707 0.0				2.0	-	1												
0.2 02					-	-												
					1 -	-												
- 20					0.6													
					-]												
					-	-												
-00 Dap				1.8	-	-												
00000				1.0	-													
77017					-													
202/01/2				.	-	1												
- Di In					0.8	-												
] -	-												
0.000					-													
14 100				1.6	-													
						1												
2007001					-	-												
					1	<u> </u>										00 // -		
	LEG Wate	END: <u>er</u>			NOTES, Sa	inples a		<u>is</u>				VS	Very Soft	t	<u>U</u> <2	сэ (кРа 25	D	Dry
	Ŧ	Wat	ter Level		U₅₀ CBR	50mm Bulk ຮ	i Diame ample !	ter tub	e sample R testing			S F	Soft Firm		25 50	5 - 50) - 100	M W	Moist Wet
	▶	(Dat Wat	ie and time sl ter Inflow	nown)	E ASS	Enviro Acid १	onmenta Sulfate {	al samp Soil Sa	ple Imple			St VSt	Stiff Very Stiff	÷	10 20)0 - 200)0 - 400	W _p W _i	Plastic Limit Liquid Limit
		Wat	ter Outflow		В	Bulk S	Sample	50				H	Hard		>2	100		,
- 83 0	Stra	<u>ra Cha</u> G	<u>anges</u> iradational or		Field Test	ts				`		Density	V	V	ery Lo	ose	Density	Index <15%
o L D. G.		tra	ansitional stra	ata stict	PID DCP(x-y)	Photo Dynar	onisationisation	on dete etrome	ector reading (ppm) eter test (test depth	n) h interval sho	wn)		L M	Lo D M	oose lediun	n Dense	Density Density	Index 15 - 35% Index 35 - 65%
		st	rata change	-	HP	Hand	Penetro	ometer	test (UCS kPa)	it (test depth interval shown) JCS kPa)						2000	Density	Index 65 - 85%

Γ				E	INGI	NEE	RING	LOG - 1	FEST P	IT			т	EST	PIT N	io: TF	9
	4	REGION		, c	LIENT	:		Alan Taylor	Civil				Р	AGE	:	1 c	of 1
		SOLUTIO	INICA	L P	ROJE		ME:	Proposed R	Rezoning				J	овι	NO:	RG	S20683.1
				s		CATI	ON:	Lot 2 DP60	194 Part L	_ot 4 DP8257	' 04		L	ogo	GED B	SY: GC	
				т	EST L	OCAT	ION:	Mumford St	treet - Por	t Macquarie			D	ATE	:	16/	6/22
╞			۴·	Hand	Tools					FASTING	488784	1 m 9	SURF	ACF	RI ·	1.4 m	
T	EST	PIT LENGT	—. Н:	Tiana	W	IDTH:				NORTHING	652273	9 m l	DATU	M:		AHD	
	Exca	avation and S	Sampling				М	laterial descript	tion and pro	file information				Fiel	d Test		
						NO							5				
	L E		RL	DEPTH		ICATI BOL	MA	TERIAL DESC	RIPTION: S	Soil type, plastic	ity/particle	TURE	SITY	Type	sult	Structure a obse	and additional rvations
MFT	NA	SAWFLES	(m)	(m)	GRA	ASSIF SYM		characteris	tics,colour,r	ninor compone	nts	SION	DEN	Test	Re		
						CL							ö	<u> </u>			
H	ered					SC		TOPSOIL: Clay dark grey, trace	yey SAND, es of grass i	fine to medium roots	grained,	M				TOPSOIL	
	sount	ES															
	Enc	0 10m															
	Ž	0.1011	1.														
					\mathbb{K}												
					>>												
			1.2	0.2													
					K												
					\gg												
) XX		0.30m		1 1 0 00								
					-			Hole Terminate	ed at 0.30 m	1							
ş					-												
			1.0	0.4													
5			· ·		1												
					-												
2																	
LID. 17																	
- 5				-													
			0.8	0.6	-												
					-												
2																	
0.000																	
4					-												
					-												
4			0.6	0.8													
2																	
					-												
5					-												
4																	
-																	
1004			·	-	1												
L):		Notes, Sa	mples a	nd Tes	<u>ts</u>				Consiste	ency		Ŀ	CS (kPa	a) <u>Moisture</u> C	ondition
N	later			Um	50mm	Diame	-	sample			VS VS	/ery Soft	t	2<br 2	25 5 - 50	D Dry M Mo	/ ist
	w w	ater Level ate and time s	hown	CBR	Bulks	ample	for CBR	testing			FI	Firm		50) - 100	W We	et
	— W	ater Inflow		E ASS	Enviro Acid S	onmenta Sulfate S	aí sample Soil Sam	e Ple			St St VSt	stitt ∕ery Stiff	Ŧ	10 20)0 - 200)0 - 400	W _p Pla W _L Liq	stic Limit uid Limit
	- 4 W trata €	ater Outflow		В	Bulk S	Sample					H I Fb I	-lard ⁼riable		>4	100		
-		Gradational or		Field Tes	<u>ts</u> Photo	ionieati	on detect	tor reading (ppg	n)		Density	V	V	ery Lo	ose	Density Inde	ex <15%
		transitional stra Definitive or di	ata stict	DCP(x-y)	Dynar	nic pen	etromete	r test (test dept	h interval sh	own)		M	D M	lose Iediun	n Dense	e Density Inde	ex 35 - 65%
0 2.00		strata change		HP	Hand	Penetro	ometer te	⊧st (UCS kPa)			D Dense Density Index 65 - 85%						

Γ		REGIONAL ENGINEERING LOG - TEST PIT TEST PIT NO: TP10 PACE: 1 of 1														
	REGIONAL GEOTECHNICAL SOLUTIONS PROJECT NAME:								Alan Taylor Civil				P	AGE	:	1 of 1
	ź		SOLUTIO	NS	L P	ROJE		ME:	Proposed Rezoning				J	ОΒΙ	NO:	RGS20683.1
					s	SITE LC	CATI	ON:	Lot 2 DP60194 Part Lot	4 DP82570	4		L	ogo	GED B	Y: GC
					т	EST L	OCAT	'ION:	Mumford Street - Port M	lacquarie			D	ATE	:	16/6/22
╞				E٠	Hand	Tools			F		488794	m 9		۵CF	RI ·	3.0 m
1	ES1	r Pl	T LENGTI	L. H:	Tiana	W	IDTH:		-	NORTHING:	6522715	m I	DATU	<u>м:</u>	I.∟.	AHD
F	Ex	(cav	ation and S	ampling					Material description and profile	information				Fiel	d Test	
	Τ					1	Z						5			
Ę	2	Ш		RL	DEPTH	UHC UHC	BOL	м	ATERIAL DESCRIPTION: Soil	type, plasticity	/particle	TURE		Type	sult	Structure and additional observations
		WAT	SAMPLES	(m)	(m)	LO	SSIFI		characteristics,colour,min	or components	5		DENS	Fest	Res	
							CLA					20	ö	<u> </u>		
É	Ē	ered					CL		FILL: Sandy CLAY, low plast of grass roots	icity, dark grey,	traces	≥ ×	Fr			FILL/TOPSOIL
		ount	ES			\mathbb{X}	Ś					Σ				
	1	t Enc	0.10m	-		\mathbb{W}	Ż	0.10m								
	: :	°Z	0.1011	-		\bigotimes	CL	0.1011	FILL: Sandy CLAY: Medium	plasticity, pal	e brown,					FILL-CLAY
						\mathbb{X}	Å		traces of gravel, fine graine	d, subangulai	r					
				-	1 -	\bigotimes										
		ŀ	0.20m	2.8	0.2	\mathbb{W}	×									
						XX	×									
			ES													
	+		0.30m		1	<u>ÞXX</u>	<u>}</u>	0.30m								
				-		1			Hole Terminated at 0.30 m							
2				-		-										
202 0				2.6	0.4											
100.7 00																
i fi L co						1										
						-										
0.00.2																
1901-10				-	1 -	1										
				2.4	0.6	{										
				-		-										
Daigei L																
00.000				-	1 -	1										
7						1										
2022						-										
0/17				2.2	0.8											
DI IĥIIM			2.2 0.0													
5.000																
2004				-		1										
	EGE	ND:			Notes, Sa	imples a	nd Tes	ts.			Consister	ncy		U	CS (kPa) Moisture Condition
<u>v</u>	Vater	-			U	50mm	1 Diame	-	e sample		VS V	ery Soft			25 5 - 50	D Dry M Moist
	Water Level (Date and time shown)					R testing		F Fi	rm		50) - 100	W Wet			
E Environmental sample Mater Inflow ASS Acid Sulfate Soil Sample					pie imple		St S VSt V	utt ery Stiff		10 20)0 - 200)0 - 400	W _p Plastic Límit W _L Liquid Limit				
Strata Changes								H H Fb Fi	ard riable		>4	100				
	<u>aid</u>	Gr	adational or	!	Field Test	ts Dhota	ionicati	on data	actor reading (ppm)		Density	V	Ve	ery Lo	ose	Density Index <15%
- 10.0		tra . De	nsitional stra	ata stict	DCP(x-y)	Dynar	nic pen	etrome	eter test (test depth interval show	n)		ME	D M	lediun	n Dense	e Density Index 35 - 65%
2 2.00		str	transitional strata DCP(x-y) Dynamic penetrometer test (test depth interval shown) strata change HP Hand Penetrometer test (UCS kPa)									D		ense	anca	Density Index 65 - 85%

Γ		ENGINEERING LOG - TEST PIT TEST PIT NO: TP11														
	5		REGIONA		, c		:	Alan	n Taylor Civil				Р	AGE	:	1 of 1
			SOLUTIO	INICA	L P	ROJE	CT NA	ME: Prop	oosed Rezonir	Ig			J	ов	NO:	RGS20683.1
					s		CATI	DN: Lot 2	2 DP60194 Pa	rt Lot 4 DP825	704		L	ogo	GED B	SY: GC
					т	EST L	OCAT	ON: Mun	nford Street - F	Port Macquarie			D	ATE		16/6/22
\mathbb{L}	FQI	IIPN		F٠	Hand	Tools				FASTING	488794	4 m 9	SURF	ACF	RI ·	16 m
ŀ	TES	ST PI	T LENGT	—. Н:	Tiana	W	IDTH:			NORTHING	652267	4 m I	DATU	M:		AHD
F	E	Excav	vation and S	ampling				Materia	I description and	profile information				Fiel	d Test	
							NO						5			
		ER		RL	DEPTH		ICAT BOL	MATERIA	AL DESCRIPTIO	N: Soil type, plastic	;ity/particle	TURE	SITY	Type	sult	Structure and additional observations
	ME	WA ⁻	SAMPLES	(m)	(m)	GRA	ASSIF SYM	ch	aracteristics,colo	our,minor compone	ents	MOIS	DEN	Test	Re	
	_						CL					-0	ö			
	H	ered					SC	TOPS roots	OIL: Clayey SIL	Γ, brown, traces of	grass	M				TOPSOIL
		count	ES	· ·		\mathbb{K}										
		t Enc	0 10m													
		å	0.1011	.												
				· ·		>>>										
			0.20m	1.4	0.2		sc	0.20m Clave	v SAND: Fine to	medium grained, r	ale brown	_				MARINE
				.		\bigotimes	>	,-	,	······································						
			ES													
			0.30m			\bigotimes	> 	0.30m		•						
						-		Hole	erminated at 0.3	0 m						
3						-										
				1.2	0.4											
200-40																
				· ·		-										
						-										
0.00.4																
				· ·		-										
				1.0	0.6	-										
				.		-										
5																
-						-										
1						-										
-						-										
5				0.8	0.8											
2						1										
						-										
5						-										
4																
1001						1										
	LEG	END:			Notes Sa	mples a	nd Tes	s			Consiste	encv		L U	CS (kP:	a) Moisture Condition
	Wate	er in the second					Diam-	-	le		VS	Very Soft	I	<	25	D Dry M Moint
	¥	Wat	er Level	hown	CBR	Bulk s	ample f	or CBR testing]		F	Firm		2: 50) - 50) - 100	W Wet
	(Date and time shown) E Environmental sample Water Inflow ASS Acid Sulfate Soil Samp				l sample oil Sample			St S	Stiff Very Stiff	:	10 20	00 - 200 00 - 400	W _p Plastic Limit			
Water Outflow B Bulk Sample							H I Fb	Hard Friable		>/	400					
		<u>a una</u> G	radational or		Field Tes	ts Dh-+	ionia -1'	n dotoot	ding (nom)		Density	V	Ve	ery Lo	oose	Density Index <15%
200		tra _ De	ansitional stra efinitive or di	ata stict	DCP(x-y)	Dynar	nic pen	etrometer test	(test depth interva	l shown)			D M	lose ediur	n Dense	e Density Index 35 - 35%
7.000		st	transitional strata DCP(x-y) Dynamic penetrometer test (test depth interval shown) strata change HP Hand Penetrometer test (UCS kPa)									D	D	ense		Density Index 65 - 85%

Γ					E	ENGI	NEE	RIN	IG LOG - TEST F	TI			т	EST	PIT N	IO: TP12
			REGIONA		, c	LIENT	:		Alan Taylor Civil				Р	AGE		1 of 1
			SOLUTIO	NS	L P	ROJE		ME:	Proposed Rezoning				J	ови	NO:	RGS20683.1
					s	SITE LO	CATI	ON:	Lot 2 DP60194 Part	Lot 4 DP82570)4		L	ogo	ED B	Y: GC
					т	EST L	OCAT	ION:	Mumford Street - Po	rt Macquarie			D	ATE	:	16/6/22
╞	:011	IPM		F۰	Hand	Tools				FASTING	488831	m 9	SURF	ACE	RI ·	2 0 m
ī	ESI	r Pl	T LENGTI	 H:	Tiana	W	IDTH:	:		NORTHING:	6522684	m I	DATU	M:		AHD
	Ex	kcav	ation and S	ampling					Material description and pr	ofile information				Fiel	d Test	
							NO						2			
	2	ER ER		RL	DEPTH	UHC DHC	ICATI BOL	м	ATERIAL DESCRIPTION:	Soil type, plasticity	/particle	TURE	SITY	Type	sult	Structure and additional observations
μH		WA'	SAWFLES	(m)	(m)	GRA	ASSIF SYM		characteristics,colour	minor component	s	NOIS.	DEN	Test	Re	
							CL/						ö			
		ered				\mathbb{X}	СН		FILL: Gravelly Sandy CL brown, gravel, fine to me	AY, medium plasti dium grained, suba	city, angular	× ×	Fr			FILL-CLAY
		count	ES			\bigotimes						Σ				
		t End	0 10m			\bigotimes										
		² ľ	0.1011				×									
						\bigotimes	×									
						\mathbb{X}	>									
				1.8	0.2	\otimes										
						\bigotimes	>									
						\mathbb{X}	× ×									
	_					\bowtie	>	0.30m								
						1			Hole Terminated at 0.30	n						
ş						-										
				1.6	0.4											
						1										
						-										
202						1										
201				1.4	0.6	-										
2																
in Ba																
2000						1										
4						-										
40014				1.2	0.8											
2				_		1										
2						-										
5																
4																
					1 -	1										
07000				· ·		1										
	FOR				Notos S-			te			Consister				C6 (LD	Moisture Condition
ν	Vater				NULES, 58	anpies a		<u></u>			VS V	ery Soft		<2	25 25	D Dry
		Wate	er Level		U₅₀ CBR	50mm Bulk s	n Diame sample t	eter tub for CBI	be sample R testing		S So F Fi	oft rm		25 50	5 - 50) - 100	M Moist W Wet
		(Date Wate	e and time sl er Inflow	hown)	E ASS	Enviro Acid S	onmenta Sulfate 9	al sam Soil Sa	ple Imple		St St	tiff erv Stiff		10 20)0 - 200)0 - 400	W _p Plastic Limit W. Liquid Limit
_	-	Wate	er Outflow		В	Bulk S	Sample	Ua				ard		>2	100	
S	trata	Gr	inges adational or		Field Tes	<u>ts</u>					⊢b Fr Density	iable V	V	ery Lo	ose	Density Index <15%
		tra	insitional stra	ata	PID DCP(x-v)	Photo Dynar	ionisati nic pen	on dete etrome	ector reading (ppm) eter test (test depth interval s	nown)		L ME	Lo D M	oose ediun	n Dense	Density Index 15 - 35% Density Index 35 - 65%
C.00.2 D		Definitive or distict strata change DCP(x-y) Dynamic penetrometer test (test depth interval shown) HP Hand Penetrometer test (UCS kPa)								,		D		ense		Density Index 65 - 85%

Appendix C

Laboratory Test Result Sheets

Regional Geotechnical Solutions RGS20683.1-AC_Rev1 15 August 2022

Comparison of Contamination Analysis Results with Adopted Investigation Levels (Results in mg/kg)

National Environment Protection (Assessment of Site Contamination) Measure (NEPM 2013)

REGIONAL Client: GEOTECHNICAL SOLUTIONS Job No

Job No.	RGS20683.1
Project:	Proposed Rezoning

Alan Taylor Civil

Location: Lot 2 DP60194 Part Lot 4 DP825704, 11-13 Mumford Street, Port Macquarie

SAMPLE	DEPTH	Material		TOTAL RECO	VERABLE HYD		S		РАН	DDT+DDE	Aldrin	РСВ		BTEX	Heavy Metals				Heavy Metals			
	(m)		C6-C10	C10-C16	C16-C34	C34-C40	TOTAL	Total	b-a-p (TEQ)	Pesticides	Pesticides		Sum	Napthalene	As	Cd	Cr (Total)#	Cu	Pb	Ni	Zn	Hg
TP1	0.0 - 0.1														5	<1	40	12	34	17	77	<0.1
TP1	0.2 - 0.3														<5	<1	77	13	70	28	134	0.2
TP2	0.0 - 0.1		<10	<50	<100	<100	<50	< 0.05	< 0.05	< 0.05	< 0.05	<0.1	<0.2	<1	<5	<1	96	16	67	29	83	0.1
TP2	0.2 - 0.3		<10	<50	<100	<100	<50	< 0.05	< 0.05	< 0.05	< 0.05	<0.1	<0.2	<1	<5	<1	262	25	43	24	47	0.1
TP3	0.0 - 0.1		<10	<50	<100	<100	<50	< 0.05	< 0.05	< 0.05	< 0.05	<0.1	<0.2	<1	<5	<1	276	50	142	24	275	0.1
TP3	0.2 - 0.3																					
TP4	0.0 - 0.1		<10	<50	<100	<100	<50	< 0.05	< 0.05	< 0.05	< 0.05	<0.1	<0.2	<1	7	<1	86	15	24	31	44	0.1
TP4	0.2 - 0.3														5	<1	71	14	18	29	35	0.1
TP5	0.0 - 0.1														6	<1	752	18	15	52	13	0.1
TP5	0.2 - 0.3		<10	<50	<100	<100	<50	< 0.05	< 0.05	< 0.05	< 0.05	<0.1	<0.2	<1	7	<1	1100	32	16	70	8	0.1
TP6	0.0 - 0.1		<10	<50	<100	<100	<50	< 0.05	< 0.05	< 0.05	< 0.05	<0.1	<0.2	<1	22	<1	62	71	15	24	14	0.1
TP7	0.0 - 0.1																					
TP9	0.0 - 0.1														<5	<1	7	<5	<5	2	7	0.1
									1													
DI			-												.5		7	.5		-0		
PPD									<u> </u> 					 	<0	< #\/ALLE	/	<>>	<>>	< <u>Z</u>	2207	<0.1
KI D																#VALUE!	0%	#VALUE!	#VALUE!	#VALUE!	33%	
CRITERIA (NEPM 2013]									a. (a							100 11 11				7.00	
Health Investigation I	Level (HIL)*:							300	3	240	6				100	20	100##	600	300	400	/400	40
Health Screening Lev	/ei (HSL)**		45	110																	1	
Ecological Screening	g Level (ESL)***		180	120	300	2800															1	
Ecological Investigat	tion Level (EIL)@								1					170	100		550	200	1100	280	230	
			1	1					1												1	

CRITERIA:

* Health Based Investigation Levels for Primary School Use (NEPM 2013)

** Health Screening Level (F2) for residential land use and fine grained soil (clay), 0 - 1m depth

*** Ecological Screening Level for recreational land use

@ Ecological Investigation Level - aged (>2 years) for residential landuse

Total Chromium (CRIII + CRVI)

Chromium VI - Speciation testing confirmed only Chromium III present

							Comparise	on of Conto	imination Ana	ysis Results v	with Adopte	d Investigat	ion Levels	(Results in mg	/kg)							
REGIONAL	Client:	Alan Taylor	Civil				Natio	nal Environr	ment Protectic	n (Assessme	nt of Site Co	ntaminatio	n) Measur	e (NEPM 2013)								
GEOTECHNICAL		RG\$20683.1																				
SOLUTIONS	Project:	Proposed R	ezonina																			
	Location:		94 Part Lot /	1 00025704	11-13 Mum	ford Street	Port Maca	uario														
	Localion.	2012 01 001	/4 all Loi -	4 DI 023704,	, 11-10 Mon	liola sheet,	Ton Macq	oune		1	T	r	T		1							
SAMPLE	DEPTH	Material		TOTAL RECO	VERABLE HY	DROCARBON	s		РАН	DDT+DDE	Aldrin	PCB		BTEX				Heavy	Metals			
	(m)		C6-C10	C10-C16	C16-C34	C34-C40	TOTAL	Total	b-a-p (TEQ)	Pesticides	Pesticides		Sum	Napthalene	As	Cd	Cr (Total)#	Cu	Pb	Ni	Zn	Hg
TP8	0.0 - 0.1		<10	160	230	<100	470	< 0.05	< 0.05	< 0.05	< 0.05	<0.1	<0.2	<1	<5	<1	6	<5	<5	4	30	0.1
TP8	0.2 - 0.3														<5	<1	18	6	<5	8	18	0.1
TP9	0.0 - 0.1														<5	<1	7	<5	<5	2	7	0.1
TP10	0.0 - 0.1																					
TP10	0.2 - 0.3														22	<1	76	21	10	3	<5	<0.1
TP11	0.0 - 0.1		<10	<50	<100	<100	<50	< 0.05	< 0.05	< 0.05	< 0.05	<0.1	<0.2	<]	7	<1	37	12	16	8	9	<0.1
TP11	0.2 - 0.3														25	<1	99	22	13	30	6	<0.1
TP12	0.0 - 0.1		<10	<50	<100	<100	<50	< 0.05	< 0.05	< 0.05	< 0.05	<0.1	<0.2	<]	<5	<1	195	160	14	64	91	0.2
וח	(TD0 0, 0, 1 m)		-												-5	-1	7	-5		-0	-	-01
BBD	(1990-0.111)					1	1	1		1		i	1		<0	<i< td=""><td>/</td><td><0</td><td><0</td><td><<u></u></td><td>3</td><td><0.1</td></i<>	/	<0	<0	< <u></u>	3	<0.1
KFD				1	1		1	<u>i</u> T	1		1		1	1		#VALUE	. 0%	#VALUE!	#VALUE!	#VALUE!	33%	
CRITERIA (NEPM 201)	<u>3)</u>	- /*.																				
Healin Basea soli in	- vestigation Leve	911	100	800	NL	NL	NL	4000	40	40	NL	NL	40	NL	3000	900	3600##	240000	1500	6000	400000	
Health Screening Le	evel (HSL)**		310	NL	NL	NL	NL															
Ecological Investiga	ation Level (EIL)								1						100	 	390	71	1100	2	350	
Ecological Screenin	g Level (ESL)***		215	170	1700	3300	NL	1.4	1.4				75	Coarse graine	d soil in i	ng/kg						
			215	170	2500	6600	NL	1.4	1.4				95	Fine grained s	oil in mg,	/kg						

CRITERIA: * Health Based Investigation Levels for Commercial Use (NEPM 2013) ** Health Screening Level (F2) for commercial land use and fine grained soil (clay), 0 - 1m depth *** Ecological Screening Level for Commercial land use @ Ecological Investigation Level - aged (>2 years) for residential landuse # Total Chromium (CRIII + CRVI) # Characteria Landow Level - aged undertaken confirmed only CrIII present

Chromium VI - Speciation testing undertaken confirmed only CrIII present

CERTIFICATE OF ANALYSIS

Work Order	ES2226216	Page	: 1 of 2
Client	REGIONAL GEOTECHNICAL SOLUTION	Laboratory	Environmental Division Sydney
Contact	: GRANT COLLIAR	Contact	Customer Services ES
Address	: Unit 14 25-27 Hurley Drive	Address	: 277-289 Woodpark Road Smithfield NSW Australia 2164
	COFFS HARBOUR NSW, AUSTRALIA 2450		
Telephone	: +61 02 6553 5641	Telephone	: +61-2-8784 8555
Project	: Rezoning	Date Samples Received	: 26-Jul-2022 08:30
Order number	:	Date Analysis Commenced	: 29-Jul-2022
C-O-C number	:	Issue Date	: 05-Aug-2022 19:12
Sampler	:		Hac-MRA NATA
Site	: Lot 2 & Lot 4, Mumford Street, Port Macquarie		
Quote number	: EN/222		Accreditation No. 825
No. of samples received	: 1		Accredited for compliance with
No. of samples analysed	: 1		ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Dian Dao	Senior Chemist - Inorganics	Sydney Inorganics, Smithfield, NSW
Wisam Marassa	Inorganics Coordinator	Sydney Inorganics, Smithfield, NSW

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

 \sim = Indicates an estimated value.

• EG048G: Poor spike recovery for Hexavalent Chromium by Alkaline Digestion due to matrix interferences.

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	TP5 0.2-0.3	 	
		Sampli	ng date / time	20-Jul-2022 00:00	 	
Compound	CAS Number	LOR	Unit	ES2226216-001	 	
				Result	 	
EA055: Moisture Content (Dried @ 105	-110°C)					
Moisture Content		0.1	%	28.0	 	
EG005(ED093)T: Total Metals by ICP-A	ES					
Chromium	7440-47-3	2	mg/kg	994	 	
EG048: Hexavalent Chromium (Alkaling	e Digest)					
Hexavalent Chromium	18540-29-9	0.5	mg/kg	1.6	 	
EG049: Trivalent Chromium						
Trivalent Chromium	16065-83-1	2	mg/kg	992	 	

CERTIFICATE OF ANALYSIS

Work Order	ES2221406	Page	: 1 of 23	
Client	REGIONAL GEOTECHNICAL SOLUTION	Laboratory	Environmental Division Sydney	
Contact	: MR TIM MORRIS	Contact	: Customer Services ES	
Address	: 44 BENT STREET	Address	: 277-289 Woodpark Road Smithfield NSW Australia 2164	
	WINGHAM NSW, AUSTRALIA 2429			
Telephone	: +61 02 6553 5641	Telephone	: +61-2-8784 8555	
Project	: Rezoning	Date Samples Received	: 20-Jun-2022 09:35	
Order number	:	Date Analysis Commenced	: 22-Jun-2022	
C-O-C number	:	Issue Date	: 30-Jun-2022 21:13	
Sampler	:		Hac-MRA NA	IA
Site	: Lot 2 & Lot 4, Mumford Street, Port Macquarie			
Quote number	: EN/222			
No. of samples received	: 22		Accreditation Accreditation	ce with
No. of samples analysed	: 22		ISO/IEC 17025 - 1	lesting

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Descriptive Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Ankit Joshi	Senior Chemist - Inorganics	Sydney Inorganics, Smithfield, NSW
Brendan Schrader	Laboratory Technician	Newcastle - Asbestos, Mayfield West, NSW
Dian Dao	Senior Chemist - Inorganics	Sydney Inorganics, Smithfield, NSW
Edwandy Fadjar	Organic Coordinator	Sydney Inorganics, Smithfield, NSW
Edwandy Fadjar	Organic Coordinator	Sydney Organics, Smithfield, NSW
Ivan Taylor	Analyst	Sydney Inorganics, Smithfield, NSW
Jake Spooner	Laboratory Technician	Newcastle - Asbestos, Mayfield West, NSW
Vincent Emerton-Bell	Laboratory Technician	Newcastle - Inorganics, Mayfield West, NSW

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

- EA150H: Soil particle density results fell outside the scope of AS1289.3.6.3. Results should be scrutinised accordingly.
- Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) per the NEPM (2013) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero, for 'TEQ 1/2LOR' are treated as half the reported LOR, and for 'TEQ LOR' are treated as being equal to the reported LOR. Note: TEQ 1/2LOR and TEQ LOR will calculate as 0.6mg/Kg and 1.2mg/Kg respectively for samples with non-detects for all of the eight TEQ PAHs.
- EA200: Asbestos Identification Samples were analysed by Polarised Light Microscopy including dispersion staining.
- EP080: Where reported, Total Xylenes is the sum of the reported concentrations of m&p-Xylene and o-Xylene at or above the LOR.
- EP068: Where reported, Total Chlordane (sum) is the sum of the reported concentrations of cis-Chlordane and trans-Chlordane at or above the LOR.
- EP068: Where reported, Total OCP is the sum of the reported concentrations of all Organochlorine Pesticides at or above LOR.
- EP075(SIM): Where reported, Total Cresol is the sum of the reported concentrations of 2-Methylphenol and 3- & 4-Methylphenol at or above the LOR.
- EG005: Poor precision was obtained for Lead on sample ESS2221406-#006. Results have been confirmed by re-extraction and reanalysis.
- EP075(SIM): LOR raised due to the high amount of moisture present.
- EA200 Legend
- EA200 'Am' Amosite (brown asbestos)
- EA200 'Cr' Crocidolite (blue asbestos)
- EA200 'Ch' Chrysotile (white asbestos)
- EA200: 'UMF' Unknown Mineral Fibres. "-" indicates fibres detected may or may not be asbestos fibres. Confirmation by alternative techniques is recommended.
- EA200: Analysis of asbestos from swabs and tapes is not covered under the current scope of NATA accreditation.
- EA200 'Trace' Asbestos fibres ("Free Fibres") detected by trace analysis per AS4964. The result can be interpreted that the sample contains detectable 'respirable' asbestos fibres
- EA200: For samples larger than 30g, the <2mm fraction may be sub-sampled prior to trace analysis as outlined in ISO23909:2008(E) Sect 6.3.2-2
- ED007 and ED008: When Exchangeable AI is reported from these methods, it should be noted that Rayment & Lyons (2011) suggests Exchange Acidity by 1M KCI Method 15G1 (ED005) is a more suitable method for the determination of exchange acidity (H+ + AI3+).
- EA200: 'Yes' Asbestos detected by polarised light microscopy including dispersion staining.
- EA200: 'No*' No asbestos found, at the reporting limit of 0.1g/kg, by polarised light microscopy including dispersion staining. Asbestos material was detected and positively identified at concentrations estimated to be below 0.1g/kg.
- EA200: 'No' No asbestos found at the reporting limit 0.1g/kg, by polarised light microscopy including dispersion staining.

 Page
 : 3 of 23

 Work Order
 : ES2221406

 Client
 : REGIONAL GEOTECHNICAL SOLUTION

 Project
 : Rezoning

• EA200: N/A - Not Applicable

Page : 4 of 23 Work Order : ES2221406 Client : REGIONAL GEOTECHNICAL SOLUTION Project : Rezoning

Sub-Matrix: SOIL			Sample ID	TP1	TP1	TP2	TP2	TP3		
(Matrix: SOIL)				0-0.1	0.2-0.3	0-0.1	0.2-0.3	0-0.1		
		Sampli	ng date / time	20-Jun-2022 00:00						
Compound	CAS Number	LOR	Unit	ES2221406-001	ES2221406-002	ES2221406-003	ES2221406-004	ES2221406-006		
				Result	Result	Result	Result	Result		
EA055: Moisture Content (Dried @ 10	05-110°C)									
Moisture Content		1.0	%	19.5	12.6	11.0	19.2	21.3		
EG005(ED093)T: Total Metals by ICP-	-AES									
Arsenic	7440-38-2	5	mg/kg	5	<5	<5	<5	<5		
Cadmium	7440-43-9	1	mg/kg	<1	<1	<1	<1	<1		
Chromium	7440-47-3	2	mg/kg	40	77	96	262	276		
Copper	7440-50-8	5	mg/kg	12	13	16	25	50		
Lead	7439-92-1	5	mg/kg	34	70	67	43	142		
Nickel	7440-02-0	2	mg/kg	17	28	29	24	24		
Zinc	7440-66-6	5	mg/kg	77	134	83	47	275		
EG035T: Total Recoverable Mercury by FIMS										
Mercury	7439-97-6	0.1	mg/kg	<0.1	0.2	0.1	0.1	0.1		
EP066: Polychlorinated Biphenyls (P	CB)									
Total Polychlorinated biphenyls		0.1	mg/kg			<0.1	<0.1	<0.1		
EP068A: Organochlorine Pesticides	(OC)									
alpha-BHC	319-84-6	0.05	mg/kg			<0.05	<0.05	<0.05		
Hexachlorobenzene (HCB)	118-74-1	0.05	mg/kg			<0.05	<0.05	<0.05		
beta-BHC	319-85-7	0.05	mg/kg			<0.05	<0.05	<0.05		
gamma-BHC	58-89-9	0.05	mg/kg			<0.05	<0.05	<0.05		
delta-BHC	319-86-8	0.05	mg/kg			<0.05	<0.05	<0.05		
Heptachlor	76-44-8	0.05	mg/kg			<0.05	<0.05	<0.05		
Aldrin	309-00-2	0.05	mg/kg			<0.05	<0.05	<0.05		
Heptachlor epoxide	1024-57-3	0.05	mg/kg			<0.05	<0.05	<0.05		
^ Total Chlordane (sum)		0.05	mg/kg			<0.05	<0.05	<0.05		
trans-Chlordane	5103-74-2	0.05	mg/kg			<0.05	<0.05	<0.05		
alpha-Endosulfan	959-98-8	0.05	mg/kg			<0.05	<0.05	<0.05		
cis-Chlordane	5103-71-9	0.05	mg/kg			<0.05	<0.05	<0.05		
Dieldrin	60-57-1	0.05	mg/kg			<0.05	<0.05	<0.05		
4.4`-DDE	72-55-9	0.05	mg/kg			<0.05	<0.05	<0.05		
Endrin	72-20-8	0.05	mg/kg			<0.05	<0.05	<0.05		
beta-Endosulfan	33213-65-9	0.05	mg/kg			<0.05	<0.05	<0.05		
^ Endosulfan (sum)	115-29-7	0.05	mg/kg			<0.05	<0.05	<0.05		
4.4`-DDD	72-54-8	0.05	mg/kg			<0.05	<0.05	<0.05		
Endrin aldehyde	7421-93-4	0.05	mg/kg			<0.05	<0.05	<0.05		
Endosulfan sulfate	1031-07-8	0.05	mg/kg			<0.05	<0.05	<0.05		

Page : 5 of 23 Work Order : ES2221406 Client : REGIONAL GEOTECHNICAL SOLUTION Project : Rezoning

Sub-Matrix: SOIL			Sample ID	TP1	TP1	TP2	TP2	TP3
(Matrix: SOIL)				0-0.1	0.2-0.3	0-0.1	0.2-0.3	0-0.1
		Sampli	ng date / time	20-Jun-2022 00:00				
Compound	CAS Number	LOR	Unit	ES2221406-001	ES2221406-002	ES2221406-003	ES2221406-004	ES2221406-006
				Result	Result	Result	Result	Result
EP068A: Organochlorine Pesticides	s (OC) - Continued							
4.4`-DDT	50-29-3	0.2	mg/kg			<0.2	<0.2	<0.2
Endrin ketone	53494-70-5	0.05	mg/kg			<0.05	<0.05	<0.05
Methoxychlor	72-43-5	0.2	mg/kg			<0.2	<0.2	<0.2
^ Sum of Aldrin + Dieldrin	309-00-2/60-57-1	0.05	mg/kg			<0.05	<0.05	<0.05
^ Sum of DDD + DDE + DDT	72-54-8/72-55-9/5	0.05	mg/kg			<0.05	<0.05	<0.05
	0-2							
EP068B: Organophosphorus Pestic	cides (OP)							
Dichlorvos	62-73-7	0.05	mg/kg			<0.05	<0.05	<0.05
Demeton-S-methyl	919-86-8	0.05	mg/kg			<0.05	<0.05	<0.05
Monocrotophos	6923-22-4	0.2	mg/kg			<0.2	<0.2	<0.2
Dimethoate	60-51-5	0.05	mg/kg			<0.05	<0.05	<0.05
Diazinon	333-41-5	0.05	mg/kg			<0.05	<0.05	<0.05
Chlorpyrifos-methyl	5598-13-0	0.05	mg/kg			<0.05	<0.05	<0.05
Parathion-methyl	298-00-0	0.2	mg/kg			<0.2	<0.2	<0.2
Malathion	121-75-5	0.05	mg/kg			<0.05	<0.05	<0.05
Fenthion	55-38-9	0.05	mg/kg			<0.05	<0.05	<0.05
Chlorpyrifos	2921-88-2	0.05	mg/kg			<0.05	<0.05	<0.05
Parathion	56-38-2	0.2	mg/kg			<0.2	<0.2	<0.2
Pirimphos-ethyl	23505-41-1	0.05	mg/kg			<0.05	<0.05	<0.05
Chlorfenvinphos	470-90-6	0.05	mg/kg			<0.05	<0.05	<0.05
Bromophos-ethyl	4824-78-6	0.05	mg/kg			<0.05	<0.05	<0.05
Fenamiphos	22224-92-6	0.05	mg/kg			<0.05	<0.05	<0.05
Prothiofos	34643-46-4	0.05	mg/kg			<0.05	<0.05	<0.05
Ethion	563-12-2	0.05	mg/kg			<0.05	<0.05	<0.05
Carbophenothion	786-19-6	0.05	mg/kg			<0.05	<0.05	<0.05
Azinphos Methyl	86-50-0	0.05	mg/kg			<0.05	<0.05	<0.05
EP075(SIM)B: Polynuclear Aromatic	c Hydrocarbons							
Naphthalene	91-20-3	0.5	mg/kg			<0.5	<0.5	<0.5
Acenaphthylene	208-96-8	0.5	mg/kg			<0.5	<0.5	<0.5
Acenaphthene	83-32-9	0.5	mg/kg			<0.5	<0.5	<0.5
Fluorene	86-73-7	0.5	mg/kg			<0.5	<0.5	<0.5
Phenanthrene	85-01-8	0.5	mg/kg			<0.5	<0.5	<0.5
Anthracene	120-12-7	0.5	mg/kg			<0.5	<0.5	<0.5
Fluoranthene	206-44-0	0.5	mg/kg			<0.5	<0.5	<0.5

Page : 6 of 23 Work Order : ES2221406 Client : REGIONAL GEOTECHNICAL SOLUTION Project : Rezoning

Sub-Matrix: SOIL			Sample ID	TP1	TP1	TP2	TP2	TP3
(Matrix: SOIL)				0-0.1	0.2-0.3	0-0.1	0.2-0.3	0-0.1
		Sampli	ng date / time	20-Jun-2022 00:00				
Compound	CAS Number	LOR	Unit	ES2221406-001	ES2221406-002	ES2221406-003	ES2221406-004	ES2221406-006
				Result	Result	Result	Result	Result
EP075(SIM)B: Polynuclear Aromatic H	lydrocarbons - Cont	inued						
Pyrene	129-00-0	0.5	mg/kg			<0.5	<0.5	<0.5
Benz(a)anthracene	56-55-3	0.5	mg/kg			<0.5	<0.5	<0.5
Chrysene	218-01-9	0.5	mg/kg			<0.5	<0.5	<0.5
Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.5	mg/kg			<0.5	<0.5	<0.5
Benzo(k)fluoranthene	207-08-9	0.5	mg/kg			<0.5	<0.5	<0.5
Benzo(a)pyrene	50-32-8	0.5	mg/kg			<0.5	<0.5	<0.5
Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg			<0.5	<0.5	<0.5
Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg			<0.5	<0.5	<0.5
Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg			<0.5	<0.5	<0.5
^ Sum of polycyclic aromatic hydrocarbon	IS	0.5	mg/kg			<0.5	<0.5	<0.5
^ Benzo(a)pyrene TEQ (zero)		0.5	mg/kg			<0.5	<0.5	<0.5
^ Benzo(a)pyrene TEQ (half LOR)		0.5	mg/kg			0.6	0.6	0.6
^ Benzo(a)pyrene TEQ (LOR)		0.5	mg/kg			1.2	1.2	1.2
EP080/071: Total Petroleum Hydrocar	bons							
C6 - C9 Fraction		10	mg/kg			<10	<10	<10
C10 - C14 Fraction		50	mg/kg			<50	<50	<50
C15 - C28 Fraction		100	mg/kg			<100	<100	<100
C29 - C36 Fraction		100	mg/kg			<100	<100	<100
^ C10 - C36 Fraction (sum)		50	mg/kg			<50	<50	<50
EP080/071: Total Recoverable Hydroc	arbons - NEPM 201	3 Fractio	าร					
C6 - C10 Fraction	C6_C10	10	mg/kg			<10	<10	<10
[^] C6 - C10 Fraction minus BTEX (F1)	C6_C10-BTEX	10	mg/kg			<10	<10	<10
>C10 - C16 Fraction		50	mg/kg			<50	<50	<50
>C16 - C34 Fraction		100	mg/kg			<100	<100	<100
>C34 - C40 Fraction		100	mg/kg			<100	<100	<100
^ >C10 - C40 Fraction (sum)		50	mg/kg			<50	<50	<50
^ >C10 - C16 Fraction minus Naphthalene		50	mg/kg			<50	<50	<50
(F2)								
EP080: BTEXN								
Benzene	71-43-2	0.2	mg/kg			<0.2	<0.2	<0.2
Toluene	108-88-3	0.5	mg/kg			<0.5	<0.5	<0.5
Ethylbenzene	100-41-4	0.5	mg/kg			<0.5	<0.5	<0.5
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg			<0.5	<0.5	<0.5

Page : 7 of 23 Work Order : ES2221406 Client : REGIONAL GEOTECHNICAL SOLUTION Project : Rezoning

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	TP1 0-0.1	TP1 0.2-0.3	TP2 0-0.1	TP2 0.2-0.3	TP3 0-0.1		
		Sampl	ing date / time	20-Jun-2022 00:00						
Compound	CAS Number	LOR	Unit	ES2221406-001	ES2221406-002	ES2221406-003	ES2221406-004	ES2221406-006		
				Result	Result	Result	Result	Result		
EP080: BTEXN - Continued										
ortho-Xylene	95-47-6	0.5	mg/kg			<0.5	<0.5	<0.5		
^ Sum of BTEX		0.2	mg/kg			<0.2	<0.2	<0.2		
^ Total Xylenes		0.5	mg/kg			<0.5	<0.5	<0.5		
Naphthalene	91-20-3	1	mg/kg			<1	<1	<1		
EP066S: PCB Surrogate										
Decachlorobiphenyl	2051-24-3	0.1	%			83.5	74.3	101		
EP068S: Organochlorine Pesticide S	urrogate									
Dibromo-DDE	21655-73-2	0.05	%			97.2	81.8	88.0		
EP068T: Organophosphorus Pesticio	de Surrogate									
DEF	78-48-8	0.05	%			104	81.7	130		
EP075(SIM)S: Phenolic Compound S	urrogates									
Phenol-d6	13127-88-3	0.5	%			81.4	80.3	102		
2-Chlorophenol-D4	93951-73-6	0.5	%			89.6	82.8	103		
2.4.6-Tribromophenol	118-79-6	0.5	%			70.5	66.3	89.0		
EP075(SIM)T: PAH Surrogates										
2-Fluorobiphenyl	321-60-8	0.5	%			92.1	92.2	99.9		
Anthracene-d10	1719-06-8	0.5	%			88.1	87.6	99.0		
4-Terphenyl-d14	1718-51-0	0.5	%			82.8	82.8	112		
EP080S: TPH(V)/BTEX Surrogates										
1.2-Dichloroethane-D4	17060-07-0	0.2	%			80.5	77.9	79.7		
Toluene-D8	2037-26-5	0.2	%			77.1	74.8	82.4		
4-Bromofluorobenzene	460-00-4	0.2	%			78.4	77.2	89.5		

Page : 8 of 23 Work Order : ES2221406 Client : REGIONAL GEOTECHNICAL SOLUTION Project : Rezoning

Sub-Matrix: SOIL			Sample ID	TP3	TP4	TP4	TP5	TP5		
(Matrix: SOIL)				0.2-0.3	0-0.1	0.2-0.3	0-0.1	0.2-0.3		
		Samplii	ng date / time	20-Jun-2022 00:00						
Compound	CAS Number	LOR	Unit	ES2221406-007	ES2221406-008	ES2221406-009	ES2221406-010	ES2221406-011		
				Result	Result	Result	Result	Result		
EA055: Moisture Content (Dried @ 10	5-110°C)									
Moisture Content		1.0	%		29.3	17.2	36.4	32.2		
EA200: AS 4964 - 2004 Identification o	of Asbestos in Soils									
Asbestos Detected	1332-21-4	0.1	g/kg	Yes						
Asbestos (Trace)	1332-21-4	5	Fibres	No						
Asbestos Type	1332-21-4	-		Ch						
Synthetic Mineral Fibre		0.1	g/kg	No						
Organic Fibre		0.1	g/kg	No						
Sample weight (dry)		0.01	g	152						
APPROVED IDENTIFIER:		-		J.SPOONER						
EG005(ED093)T: Total Metals by ICP-AES										
Arsenic	7440-38-2	5	mg/kg		7	5	6	7		
Cadmium	7440-43-9	1	mg/kg		<1	<1	<1	<1		
Chromium	7440-47-3	2	mg/kg		86	71	752	1100		
Copper	7440-50-8	5	mg/kg		15	14	18	22		
Lead	7439-92-1	5	mg/kg		24	18	15	16		
Nickel	7440-02-0	2	mg/kg		31	29	52	70		
Zinc	7440-66-6	5	mg/kg		44	35	13	8		
EG035T: Total Recoverable Mercury I	by FIMS									
Mercury	7439-97-6	0.1	mg/kg		<0.1	<0.1	<0.1	<0.1		
EP066: Polychlorinated Biphenyls (PC	:В)									
Total Polychlorinated biphenyls		0.1	mg/kg		<0.1			<0.1		
EP068A: Organochlorine Pesticides (DC)									
alpha-BHC	319-84-6	0.05	mg/kg		<0.05			<0.05		
Hexachlorobenzene (HCB)	118-74-1	0.05	mg/kg		<0.05			<0.05		
beta-BHC	319-85-7	0.05	mg/kg		<0.05			<0.05		
gamma-BHC	58-89-9	0.05	mg/kg		<0.05			<0.05		
delta-BHC	319-86-8	0.05	mg/kg		<0.05			<0.05		
Heptachlor	76-44-8	0.05	mg/kg		<0.05			<0.05		
Aldrin	309-00-2	0.05	mg/kg		<0.05			<0.05		
Heptachlor epoxide	1024-57-3	0.05	mg/kg		<0.05			<0.05		
^ Total Chlordane (sum)		0.05	mg/kg		<0.05			<0.05		
trans-Chlordane	5103-74-2	0.05	mg/kg		<0.05			<0.05		
alpha-Endosulfan	959-98-8	0.05	mg/kg		<0.05			<0.05		
cis-Chlordane	5103-71-9	0.05	mg/kg		<0.05			<0.05		

Page : 9 of 23 Work Order : ES2221406 Client : REGIONAL GEOTECHNICAL SOLUTION Project : Rezoning

Sub-Matrix: SOIL			Sample ID	TP3	TP4	TP4	TP5	TP5		
(Matrix: SOIL)				0.2-0.3	0-0.1	0.2-0.3	0-0.1	0.2-0.3		
		Sampli	ng date / time	20-Jun-2022 00:00						
Compound	CAS Number	LOR	Unit	ES2221406-007	ES2221406-008	ES2221406-009	ES2221406-010	ES2221406-011		
				Result	Result	Result	Result	Result		
EP068A: Organochlorine Pesticides	(OC) - Continued									
Dieldrin	60-57-1	0.05	mg/kg		<0.05			<0.05		
4.4`-DDE	72-55-9	0.05	mg/kg		<0.05			<0.05		
Endrin	72-20-8	0.05	mg/kg		<0.05			<0.05		
beta-Endosulfan	33213-65-9	0.05	mg/kg		<0.05			<0.05		
^ Endosulfan (sum)	115-29-7	0.05	mg/kg		<0.05			<0.05		
4.4`-DDD	72-54-8	0.05	mg/kg		<0.05			<0.05		
Endrin aldehyde	7421-93-4	0.05	mg/kg		<0.05			<0.05		
Endosulfan sulfate	1031-07-8	0.05	mg/kg		<0.05			<0.05		
4.4`-DDT	50-29-3	0.2	mg/kg		<0.2			<0.2		
Endrin ketone	53494-70-5	0.05	mg/kg		<0.05			<0.05		
Methoxychlor	72-43-5	0.2	mg/kg		<0.2			<0.2		
^ Sum of Aldrin + Dieldrin	309-00-2/60-57-1	0.05	mg/kg		<0.05			<0.05		
^ Sum of DDD + DDE + DDT	72-54-8/72-55-9/5	0.05	mg/kg		<0.05			<0.05		
	0-2									
EP068B: Organophosphorus Pesticides (OP)										
Dichlorvos	62-73-7	0.05	mg/kg		<0.05			<0.05		
Demeton-S-methyl	919-86-8	0.05	mg/kg		<0.05			<0.05		
Monocrotophos	6923-22-4	0.2	mg/kg		<0.2			<0.2		
Dimethoate	60-51-5	0.05	mg/kg		<0.05			<0.05		
Diazinon	333-41-5	0.05	mg/kg		<0.05			<0.05		
Chlorpyrifos-methyl	5598-13-0	0.05	mg/kg		<0.05			<0.05		
Parathion-methyl	298-00-0	0.2	mg/kg		<0.2			<0.2		
Malathion	121-75-5	0.05	mg/kg		<0.05			<0.05		
Fenthion	55-38-9	0.05	mg/kg		<0.05			<0.05		
Chlorpyrifos	2921-88-2	0.05	mg/kg		<0.05			<0.05		
Parathion	56-38-2	0.2	mg/kg		<0.2			<0.2		
Pirimphos-ethyl	23505-41-1	0.05	mg/kg		<0.05			<0.05		
Chlorfenvinphos	470-90-6	0.05	mg/kg		<0.05			<0.05		
Bromophos-ethyl	4824-78-6	0.05	mg/kg		<0.05			<0.05		
Fenamiphos	22224-92-6	0.05	mg/kg		<0.05			<0.05		
Prothiofos	34643-46-4	0.05	mg/kg		<0.05			<0.05		
Ethion	563-12-2	0.05	mg/kg		<0.05			<0.05		
Carbophenothion	786-19-6	0.05	mg/kg		<0.05			<0.05		
Azinphos Methyl	86-50-0	0.05	mg/kg		<0.05			<0.05		

Page : 10 of 23 Work Order : ES2221406 Client : REGIONAL GEOTECHNICAL SOLUTION Project : Rezoning

Sub-Matrix: SOIL			Sample ID	TP3	TP4	TP4	TP5	TP5
(Matrix: SOIL)				0.2-0.3	0-0.1	0.2-0.3	0-0.1	0.2-0.3
		Sampli	ng date / time	20-Jun-2022 00:00				
Compound	CAS Number	LOR	Unit	ES2221406-007	ES2221406-008	ES2221406-009	ES2221406-010	ES2221406-011
				Result	Result	Result	Result	Result
EP075(SIM)B: Polynuclear Aromatic	Hydrocarbons							
Naphthalene	91-20-3	0.5	mg/kg		<0.5			<0.5
Acenaphthylene	208-96-8	0.5	mg/kg		<0.5			<0.5
Acenaphthene	83-32-9	0.5	mg/kg		<0.5			<0.5
Fluorene	86-73-7	0.5	mg/kg		<0.5			<0.5
Phenanthrene	85-01-8	0.5	mg/kg		<0.5			<0.5
Anthracene	120-12-7	0.5	mg/kg		<0.5			<0.5
Fluoranthene	206-44-0	0.5	mg/kg		<0.5			<0.5
Pyrene	129-00-0	0.5	mg/kg		<0.5			<0.5
Benz(a)anthracene	56-55-3	0.5	mg/kg		<0.5			<0.5
Chrysene	218-01-9	0.5	mg/kg		<0.5			<0.5
Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.5	mg/kg		<0.5			<0.5
Benzo(k)fluoranthene	207-08-9	0.5	mg/kg		<0.5			<0.5
Benzo(a)pyrene	50-32-8	0.5	mg/kg		<0.5			<0.5
Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg		<0.5			<0.5
Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg		<0.5			<0.5
Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg		<0.5			<0.5
^ Sum of polycyclic aromatic hydrocarb	ons	0.5	mg/kg		<0.5			<0.5
^ Benzo(a)pyrene TEQ (zero)		0.5	mg/kg		<0.5			<0.5
^ Benzo(a)pyrene TEQ (half LOR)		0.5	mg/kg		0.6			0.6
^ Benzo(a)pyrene TEQ (LOR)		0.5	mg/kg		1.2			1.2
EP080/071: Total Petroleum Hydroca	arbons							
C6 - C9 Fraction		10	mg/kg		<10			<10
C10 - C14 Fraction		50	mg/kg		<50			<50
C15 - C28 Fraction		100	mg/kg		<100			<100
C29 - C36 Fraction		100	mg/kg		<100			<100
^ C10 - C36 Fraction (sum)		50	mg/kg		<50			<50
EP080/071: Total Recoverable Hydro	ocarbons - NEPM 201	3 Fractio	ns					
C6 - C10 Fraction	C6_C10	10	mg/kg		<10			<10
^ C6 - C10 Fraction minus BTEX	C6_C10-BTEX	10	mg/kg		<10			<10
(F1)								
>C10 - C16 Fraction		50	mg/kg		<50			<50
>C16 - C34 Fraction		100	mg/kg		<100			<100
>C34 - C40 Fraction		100	mg/kg		<100			<100
^ >C10 - C40 Fraction (sum)		50	mg/kg		<50			<50

Page : 11 of 23 Work Order : ES2221406 Client : REGIONAL GEOTECHNICAL SOLUTION Project : Rezoning

Sub-Matrix: SOIL			Sample ID	TP3	TP4	TP4	TP5	TP5	
(Matrix: SOIL)				0.2-0.3	0-0.1	0.2-0.3	0-0.1	0.2-0.3	
		Sampli	ng date / time	20-Jun-2022 00:00					
Compound	CAS Number	LOR	Unit	ES2221406-007	ES2221406-008	ES2221406-009	ES2221406-010	ES2221406-011	
				Result	Result	Result	Result	Result	
EP080/071: Total Recoverable Hydroc	arbons - NEPM 201	3 Fractio	ns - Continued						
^ >C10 - C16 Fraction minus Naphthalene		50	mg/kg		<50			<50	
(F2)									
EP080: BTEXN									
Benzene	71-43-2	0.2	mg/kg		<0.2			<0.2	
Toluene	108-88-3	0.5	mg/kg		<0.5			<0.5	
Ethylbenzene	100-41-4	0.5	mg/kg		<0.5			<0.5	
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg		<0.5			<0.5	
ortho-Xylene	95-47-6	0.5	mg/kg		<0.5			<0.5	
^ Sum of BTEX		0.2	mg/kg		<0.2			<0.2	
^ Total Xylenes		0.5	mg/kg		<0.5			<0.5	
Naphthalene	91-20-3	1	mg/kg		<1			<1	
EP066S: PCB Surrogate									
Decachlorobiphenyl	2051-24-3	0.1	%		67.5			65.3	
EP068S: Organochlorine Pesticide Su	ırrogate								
Dibromo-DDE	21655-73-2	0.05	%		58.0			80.8	
EP068T: Organophosphorus Pesticid	e Surrogate								
DEF	78-48-8	0.05	%		82.2			74.8	
EP075(SIM)S: Phenolic Compound Su	urrogates								
Phenol-d6	13127-88-3	0.5	%		90.7			76.1	
2-Chlorophenol-D4	93951-73-6	0.5	%		89.3			83.8	
2.4.6-Tribromophenol	118-79-6	0.5	%		96.2			69.9	
EP075(SIM)T: PAH Surrogates									
2-Fluorobiphenyl	321-60-8	0.5	%		84.0			90.7	
Anthracene-d10	1719-06-8	0.5	%		97.1			85.6	
4-Terphenyl-d14	1718-51-0	0.5	%		92.4			81.3	
EP080S: TPH(V)/BTEX Surrogates									
1.2-Dichloroethane-D4	17060-07-0	0.2	%		89.4			87.6	
Toluene-D8	2037-26-5	0.2	%		101			83.5	
4-Bromofluorobenzene	460-00-4	0.2	%		108			87.8	

Page : 12 of 23 Work Order : ES2221406 Client : REGIONAL GEOTECHNICAL SOLUTION Project : Rezoning

Sub-Matrix: SOIL			Sample ID	TP6	TP7	TP8	TP8	TP9
(Matrix: SOIL)				0-0.1	0-0.1	0-0.1	0.2-0.3	0-0.1
		Sampli	ng date / time	20-Jun-2022 00:00				
Compound	CAS Number	LOR	Unit	ES2221406-012	ES2221406-013	ES2221406-014	ES2221406-015	ES2221406-016
				Result	Result	Result	Result	Result
EA001: pH in soil using 0.01M CaCl extr	act							
pH (CaCl2)		0.1	pH Unit	5.2				
EA002: pH 1:5 (Soils)								
pH Value		0.1	pH Unit	6.0				
EA010: Conductivity (1:5)								
Electrical Conductivity @ 25°C		1	μS/cm	218				
EA055: Moisture Content (Dried @ 105-1	110°C)							
Moisture Content		0.1	%	62.2				
Moisture Content		1.0	%			1.1	5.2	16.3
EA150: Soil Classification based on Par	ticle Size							
Clay (<2 µm)		1	%	19				
EA152: Soil Particle Density								
Soil Particle Density (Clav/Silt/Sand)		0.01	a/cm3	1.58				
EA200: AS 4064 2004 Identification of Ashestes in Sails								
Asbestos Detected	1332-21_4	01	a/ka		No			
Ashestos (Trace)	1332-21-4	5	Fibres		No			
Asbestos Type	1332-21-4	-			-			
Synthetic Mineral Fibre		0.1	a/ka		No			
Organic Fibre		0.1	g/kg		No			
Sample weight (dry)		0.01	q		142			
APPROVED IDENTIFIER:		-			J.SPOONER			
ED007: Exchangeable Cations								
Exchangeable Calcium		0.1	meg/100g	8.1				
Exchangeable Magnesium		0.1	meq/100g	8.8				
Exchangeable Potassium		0.1	meq/100g	0.4				
Exchangeable Sodium		0.1	meq/100g	4.3				
Cation Exchange Capacity		0.1	meq/100g	21.8				
EG005(ED093)T: Total Metals by ICP-AE	S							
Iron	7439-89-6	0.005	%	1.04				
Arsenic	7440-38-2	5	mg/kg	22		<5	<5	<5
Cadmium	7440-43-9	1	mg/kg	<1		<1	<1	<1
Chromium	7440-47-3	2	mg/kg	62		6	18	7
Copper	7440-50-8	5	mg/kg	71		<5	6	<5
Lead	7439-92-1	5	mg/kg	15		<5	<5	<5
Lead	7439-92-1	5	mg/kg	15		<5	<5	<5

Page : 13 of 23 Work Order : ES2221406 Client : REGIONAL GEOTECHNICAL SOLUTION Project : Rezoning

Sub-Matrix: SOIL			Sample ID	TP6	TP7	TP8	TP8	TP9		
(Matrix: SOIL)				0-0.1	0-0.1	0-0.1	0.2-0.3	0-0.1		
		Sampli	ing date / time	20-Jun-2022 00:00						
Compound	CAS Number	LOR	Unit	ES2221406-012	ES2221406-013	ES2221406-014	ES2221406-015	ES2221406-016		
				Result	Result	Result	Result	Result		
EG005(ED093)T: Total Metals by ICP	-AES - Continued									
Nickel	7440-02-0	2	mg/kg	24		4	8	2		
Zinc	7440-66-6	5	mg/kg	14		30	18	7		
EG035T: Total Recoverable Mercury	y by FIMS									
Mercury	7439-97-6	0.1	mg/kg	<0.1		<0.1	<0.1	<0.1		
EP004: Organic Matter										
Organic Matter		0.5	%	21.9						
Total Organic Carbon		0.5	%	12.7						
EP066: Polychlorinated Biphenyls (PCB)										
Total Polychlorinated biphenyls		0.1	mg/kg	<0.1		<0.1				
EP068A: Organochlorine Pesticides	(0C)									
alpha-BHC	319-84-6	0.05	mg/kg	<0.05		<0.05				
Hexachlorobenzene (HCB)	118-74-1	0.05	mg/kg	<0.05		<0.05				
beta-BHC	319-85-7	0.05	mg/kg	<0.05		<0.05				
gamma-BHC	58-89-9	0.05	mg/kg	<0.05		<0.05				
delta-BHC	319-86-8	0.05	mg/kg	<0.05		<0.05				
Heptachlor	76-44-8	0.05	mg/kg	<0.05		<0.05				
Aldrin	309-00-2	0.05	mg/kg	<0.05		<0.05				
Heptachlor epoxide	1024-57-3	0.05	mg/kg	<0.05		<0.05				
^ Total Chlordane (sum)		0.05	mg/kg	<0.05		<0.05				
trans-Chlordane	5103-74-2	0.05	mg/kg	<0.05		<0.05				
alpha-Endosulfan	959-98-8	0.05	mg/kg	<0.05		<0.05				
cis-Chlordane	5103-71-9	0.05	mg/kg	<0.05		<0.05				
Dieldrin	60-57-1	0.05	mg/kg	<0.05		<0.05				
4.4`-DDE	72-55-9	0.05	mg/kg	<0.05		<0.05				
Endrin	72-20-8	0.05	mg/kg	<0.05		<0.05				
beta-Endosulfan	33213-65-9	0.05	mg/kg	<0.05		<0.05				
^ Endosulfan (sum)	115-29-7	0.05	mg/kg	<0.05		<0.05				
4.4`-DDD	72-54-8	0.05	mg/kg	<0.05		<0.05				
Endrin aldehyde	7421-93-4	0.05	mg/kg	<0.05		<0.05				
Endosulfan sulfate	1031-07-8	0.05	mg/kg	<0.05		<0.05				
4.4`-DDT	50-29-3	0.2	mg/kg	<0.2		<0.2				
Endrin ketone	53494-70-5	0.05	mg/kg	<0.05		<0.05				
Methoxychlor	72-43-5	0.2	mg/kg	<0.2		<0.2				
^ Sum of Aldrin + Dieldrin	309-00-2/60-57-1	0.05	mg/kg	<0.05		<0.05				

Page : 14 of 23 Work Order : ES2221406 Client : REGIONAL GEOTECHNICAL SOLUTION Project : Rezoning

Sub-Matrix: SOIL			Sample ID	TP6	TP7	TP8	TP8	TP9
(Matrix: SOIL)				0-0.1	0-0.1	0-0.1	0.2-0.3	0-0.1
		Samplii	ng date / time	20-Jun-2022 00:00				
Compound	CAS Number	LOR	Unit	ES2221406-012	ES2221406-013	ES2221406-014	ES2221406-015	ES2221406-016
				Result	Result	Result	Result	Result
EP068A: Organochlorine Pesticides	(OC) - Continued							
^ Sum of DDD + DDE + DDT	72-54-8/72-55-9/5	0.05	mg/kg	<0.05		<0.05		
	0-2							
EP068B: Organophosphorus Pestic	ides (OP)							
Dichlorvos	62-73-7	0.05	mg/kg	<0.05		<0.05		
Demeton-S-methyl	919-86-8	0.05	mg/kg	<0.05		<0.05		
Monocrotophos	6923-22-4	0.2	mg/kg	<0.2		<0.2		
Dimethoate	60-51-5	0.05	mg/kg	<0.05		<0.05		
Diazinon	333-41-5	0.05	mg/kg	<0.05		<0.05		
Chlorpyrifos-methyl	5598-13-0	0.05	mg/kg	<0.05		<0.05		
Parathion-methyl	298-00-0	0.2	mg/kg	<0.2		<0.2		
Malathion	121-75-5	0.05	mg/kg	<0.05		<0.05		
Fenthion	55-38-9	0.05	mg/kg	<0.05		<0.05		
Chlorpyrifos	2921-88-2	0.05	mg/kg	<0.05		<0.05		
Parathion	56-38-2	0.2	mg/kg	<0.2		<0.2		
Pirimphos-ethyl	23505-41-1	0.05	mg/kg	<0.05		<0.05		
Chlorfenvinphos	470-90-6	0.05	mg/kg	<0.05		<0.05		
Bromophos-ethyl	4824-78-6	0.05	mg/kg	<0.05		<0.05		
Fenamiphos	22224-92-6	0.05	mg/kg	<0.05		<0.05		
Prothiofos	34643-46-4	0.05	mg/kg	<0.05		<0.05		
Ethion	563-12-2	0.05	mg/kg	<0.05		<0.05		
Carbophenothion	786-19-6	0.05	mg/kg	<0.05		<0.05		
Azinphos Methyl	86-50-0	0.05	mg/kg	<0.05		<0.05		
EP075(SIM)B: Polynuclear Aromatic	Hydrocarbons							
Naphthalene	91-20-3	0.5	mg/kg	<0.8		<0.5		
Acenaphthylene	208-96-8	0.5	mg/kg	<0.8		<0.5		
Acenaphthene	83-32-9	0.5	mg/kg	<0.8		<0.5		
Fluorene	86-73-7	0.5	mg/kg	<0.8		<0.5		
Phenanthrene	85-01-8	0.5	mg/kg	<0.8		<0.5		
Anthracene	120-12-7	0.5	mg/kg	<0.8		<0.5		
Fluoranthene	206-44-0	0.5	mg/kg	<0.8		<0.5		
Pyrene	129-00-0	0.5	mg/kg	<0.8		<0.5		
Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.8		<0.5		
Chrysene	218-01-9	0.5	mg/kg	<0.8		<0.5		
Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.5	mg/kg	<0.8		<0.5		

Page : 15 of 23 Work Order : ES2221406 Client : REGIONAL GEOTECHNICAL SOLUTION Project : Rezoning

Sub-Matrix: SOIL			Sample ID	TP6	TP7	TP8	TP8	TP9
(Matrix: SOIL)				0-0.1	0-0.1	0-0.1	0.2-0.3	0-0.1
		Sampli	ng date / time	20-Jun-2022 00:00				
Compound	CAS Number	LOR	Unit	ES2221406-012	ES2221406-013	ES2221406-014	ES2221406-015	ES2221406-016
				Result	Result	Result	Result	Result
EP075(SIM)B: Polynuclear Aromatic Hy	drocarbons - Cont	inued						
Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.8		<0.5		
Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.8		<0.5		
Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.8		<0.5		
Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.8		<0.5		
Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.8		<0.5		
^ Sum of polycyclic aromatic hydrocarbons	\$	0.5	mg/kg	<0.5		<0.5		
^ Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5		<0.5		
^ Benzo(a)pyrene TEQ (half LOR)		0.5	mg/kg	1.0		0.6		
^ Benzo(a)pyrene TEQ (LOR)		0.5	mg/kg	1.9		1.2		
EP080/071: Total Petroleum Hydrocarb	ons							
C6 - C9 Fraction		10	mg/kg	<10		<10		
C10 - C14 Fraction		50	mg/kg	<50		<50		
C15 - C28 Fraction		100	mg/kg	<100		350		
C29 - C36 Fraction		100	mg/kg	<100		120		
^ C10 - C36 Fraction (sum)		50	mg/kg	<50		470		
EP080/071: Total Recoverable Hydroca	rbons - NEPM 201	3 Fractio	าร					
C6 - C10 Fraction	C6_C10	10	mg/kg	<10		<10		
[^] C6 - C10 Fraction minus BTEX	C6_C10-BTEX	10	mg/kg	<10		<10		
(F1)								
>C10 - C16 Fraction		50	mg/kg	<50		160		
>C16 - C34 Fraction		100	mg/kg	<100		230		
>C34 - C40 Fraction		100	mg/kg	<100		<100		
^ >C10 - C40 Fraction (sum)		50	mg/kg	<50		390		
^ >C10 - C16 Fraction minus Naphthalene		50	mg/kg	<50		160		
(F2)								
EP080: BTEXN								
Benzene	71-43-2	0.2	mg/kg	<0.2		<0.2		
Toluene	108-88-3	0.5	mg/kg	<0.5		<0.5		
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5		<0.5		
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5		<0.5		
ortno-Xylene	95-47-6	0.5	mg/kg	<0.5		<0.5		
A TALLY LOCATION		0.2	mg/kg	<0.2		<0.2		
^ Total Xylenes		0.5	mg/kg	<0.5		<0.5		
Naphthalene	91-20-3	1	mg/kg	<1		<1		

Page : 16 of 23 Work Order : ES2221406 Client : REGIONAL GEOTECHNICAL SOLUTION Project : Rezoning

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	TP6	TP7	TP8	TP8	TP9 0-0 1
		Sampling date / time		20 Jun 2022 00:00	20 Jun 2022 00:00	20 Jun 2022 00:00	20 Jun 2022 00:00	20 Jun 2022 00:00
					20-3011-2022 00:00		20-3011-2022 00:00	20-301-2022 00:00
Compound	CAS Number	LOR	Unit	ES2221406-012	ES2221406-013	ES2221406-014	ES2221406-015	ES2221406-016
				Result	Result	Result	Result	Result
EP066S: PCB Surrogate								
Decachlorobiphenyl	2051-24-3	0.1	%	73.7		71.0		
EP068S: Organochlorine Pesticide Surrogate								
Dibromo-DDE	21655-73-2	0.05	%	91.2		59.9		
EP068T: Organophosphorus Pesticide Surrogate								
DEF	78-48-8	0.05	%	90.2		106		
EP075(SIM)S: Phenolic Compound Surrogates								
Phenol-d6	13127-88-3	0.5	%	80.0		90.5		
2-Chlorophenol-D4	93951-73-6	0.5	%	87.8		90.0		
2.4.6-Tribromophenol	118-79-6	0.5	%	75.6		102		
EP075(SIM)T: PAH Surrogates								
2-Fluorobiphenyl	321-60-8	0.5	%	89.5		85.8		
Anthracene-d10	1719-06-8	0.5	%	85.9		98.6		
4-Terphenyl-d14	1718-51-0	0.5	%	81.6		92.1		
EP080S: TPH(V)/BTEX Surrogates								
1.2-Dichloroethane-D4	17060-07-0	0.2	%	82.3		100		
Toluene-D8	2037-26-5	0.2	%	79.9		102		
4-Bromofluorobenzene	460-00-4	0.2	%	80.2		104		
Page : 17 of 23 Work Order : ES2221406 Client : REGIONAL GEOTECHNICAL SOLUTION Project : Rezoning

Sub-Matrix: SOIL			Sample ID	TP10	TP10	TP11	TP11	TP12
(Matrix: SOIL)				0-0.1	0.2-0.3	0-0.1	0.2-0.3	0-0.1
		Samplii	ng date / time	20-Jun-2022 00:00				
Compound	CAS Number	LOR	Unit	ES2221406-017	ES2221406-018	ES2221406-019	ES2221406-020	ES2221406-021
				Result	Result	Result	Result	Result
EA055: Moisture Content (Dried @ 10	5-110°C)							
Moisture Content		1.0	%		21.5	35.5	52.8	5.7
EA200: AS 4964 - 2004 Identification of Asbestos in Soils								
Asbestos Detected	1332-21-4	0.1	g/kg	No				
Asbestos (Trace)	1332-21-4	5	Fibres	No				
Asbestos Type	1332-21-4	-		-				
Synthetic Mineral Fibre		0.1	g/kg	No				
Organic Fibre		0.1	g/kg	No				
Sample weight (dry)		0.01	g	89.8				
APPROVED IDENTIFIER:		-		J.SPOONER				
EG005(ED093)T: Total Metals by ICP-4	AES							
Arsenic	7440-38-2	5	mg/kg		22	7	25	<5
Cadmium	7440-43-9	1	mg/kg		<1	<1	<1	<1
Chromium	7440-47-3	2	mg/kg		76	37	99	195
Copper	7440-50-8	5	mg/kg		21	12	22	160
Lead	7439-92-1	5	mg/kg		10	16	13	14
Nickel	7440-02-0	2	mg/kg		3	8	30	64
Zinc	7440-66-6	5	mg/kg		<5	9	6	91
EG035T: Total Recoverable Mercury I	by FIMS							
Mercury	7439-97-6	0.1	mg/kg		<0.1	<0.1	<0.1	0.2
EP066: Polychlorinated Biphenyls (PC	:В)							
Total Polychlorinated biphenyls		0.1	mg/kg		<0.1			<0.1
EP068A: Organochlorine Pesticides (0	DC)							
alpha-BHC	319-84-6	0.05	mg/kg		<0.05			<0.05
Hexachlorobenzene (HCB)	118-74-1	0.05	mg/kg		<0.05			<0.05
beta-BHC	319-85-7	0.05	mg/kg		<0.05			<0.05
gamma-BHC	58-89-9	0.05	mg/kg		<0.05			<0.05
delta-BHC	319-86-8	0.05	mg/kg		<0.05			<0.05
Heptachlor	76-44-8	0.05	mg/kg		<0.05			<0.05
Aldrin	309-00-2	0.05	mg/kg		<0.05			<0.05
Heptachlor epoxide	1024-57-3	0.05	mg/kg		<0.05			<0.05
^ Total Chlordane (sum)		0.05	mg/kg		<0.05			<0.05
trans-Chlordane	5103-74-2	0.05	mg/kg		<0.05			<0.05
alpha-Endosulfan	959-98-8	0.05	mg/kg		<0.05			<0.05
cis-Chlordane	5103-71-9	0.05	mg/kg		<0.05			<0.05

Page : 18 of 23 Work Order : ES2221406 Client : REGIONAL GEOTECHNICAL SOLUTION Project : Rezoning

Sub-Matrix: SOIL			Sample ID	TP10	TP10	TP11	TP11	TP12
(Matrix: SOIL)				0-0.1	0.2-0.3	0-0.1	0.2-0.3	0-0.1
		Sampli	ng date / time	20-Jun-2022 00:00				
Compound	CAS Number	LOR	Unit	ES2221406-017	ES2221406-018	ES2221406-019	ES2221406-020	ES2221406-021
				Result	Result	Result	Result	Result
EP068A: Organochlorine Pesticides	s (OC) - Continued							
Dieldrin	60-57-1	0.05	mg/kg		<0.05			<0.05
4.4`-DDE	72-55-9	0.05	mg/kg		<0.05			<0.05
Endrin	72-20-8	0.05	mg/kg		<0.05			<0.05
beta-Endosulfan	33213-65-9	0.05	mg/kg		<0.05			<0.05
^ Endosulfan (sum)	115-29-7	0.05	mg/kg		<0.05			<0.05
4.4`-DDD	72-54-8	0.05	mg/kg		<0.05			<0.05
Endrin aldehyde	7421-93-4	0.05	mg/kg		<0.05			<0.05
Endosulfan sulfate	1031-07-8	0.05	mg/kg		<0.05			<0.05
4.4`-DDT	50-29-3	0.2	mg/kg		<0.2			<0.2
Endrin ketone	53494-70-5	0.05	mg/kg		<0.05			<0.05
Methoxychlor	72-43-5	0.2	mg/kg		<0.2			<0.2
^ Sum of Aldrin + Dieldrin	309-00-2/60-57-1	0.05	mg/kg		<0.05			<0.05
^ Sum of DDD + DDE + DDT	72-54-8/72-55-9/5	0.05	mg/kg		<0.05			<0.05
	0-2							
EP068B: Organophosphorus Pestic	cides (OP)							
Dichlorvos	62-73-7	0.05	mg/kg		<0.05			<0.05
Demeton-S-methyl	919-86-8	0.05	mg/kg		<0.05			<0.05
Monocrotophos	6923-22-4	0.2	mg/kg		<0.2			<0.2
Dimethoate	60-51-5	0.05	mg/kg		<0.05			<0.05
Diazinon	333-41-5	0.05	mg/kg		<0.05			<0.05
Chlorpyrifos-methyl	5598-13-0	0.05	mg/kg		<0.05			<0.05
Parathion-methyl	298-00-0	0.2	mg/kg		<0.2			<0.2
Malathion	121-75-5	0.05	mg/kg		<0.05			<0.05
Fenthion	55-38-9	0.05	mg/kg		<0.05			<0.05
Chlorpyrifos	2921-88-2	0.05	mg/kg		<0.05			<0.05
Parathion	56-38-2	0.2	mg/kg		<0.2			<0.2
Pirimphos-ethyl	23505-41-1	0.05	mg/kg		<0.05			<0.05
Chlorfenvinphos	470-90-6	0.05	mg/kg		<0.05			<0.05
Bromophos-ethyl	4824-78-6	0.05	mg/kg		<0.05			<0.05
Fenamiphos	22224-92-6	0.05	mg/kg		<0.05			<0.05
Prothiofos	34643-46-4	0.05	mg/kg		<0.05			<0.05
Ethion	563-12-2	0.05	mg/kg		<0.05			<0.05
Carbophenothion	786-19-6	0.05	mg/kg		<0.05			<0.05
Azinphos Methyl	86-50-0	0.05	mg/kg		<0.05			<0.05

Page : 19 of 23 Work Order : ES2221406 Client : REGIONAL GEOTECHNICAL SOLUTION Project : Rezoning

Sub-Matrix: SOIL			Sample ID	TP10	TP10	TP11	TP11	TP12
(Matrix: SOIL)				0-0.1	0.2-0.3	0-0.1	0.2-0.3	0-0.1
		Sampli	ng date / time	20-Jun-2022 00:00				
Compound	CAS Number	LOR	Unit	ES2221406-017	ES2221406-018	ES2221406-019	ES2221406-020	ES2221406-021
				Result	Result	Result	Result	Result
EP075(SIM)B: Polynuclear Aromatic	Hydrocarbons							
Naphthalene	91-20-3	0.5	mg/kg		<0.5			<0.5
Acenaphthylene	208-96-8	0.5	mg/kg		<0.5			<0.5
Acenaphthene	83-32-9	0.5	mg/kg		<0.5			<0.5
Fluorene	86-73-7	0.5	mg/kg		<0.5			<0.5
Phenanthrene	85-01-8	0.5	mg/kg		<0.5			<0.5
Anthracene	120-12-7	0.5	mg/kg		<0.5			<0.5
Fluoranthene	206-44-0	0.5	mg/kg		<0.5			<0.5
Pyrene	129-00-0	0.5	mg/kg		<0.5			<0.5
Benz(a)anthracene	56-55-3	0.5	mg/kg		<0.5			<0.5
Chrysene	218-01-9	0.5	mg/kg		<0.5			<0.5
Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.5	mg/kg		<0.5			<0.5
Benzo(k)fluoranthene	207-08-9	0.5	mg/kg		<0.5			<0.5
Benzo(a)pyrene	50-32-8	0.5	mg/kg		<0.5			<0.5
Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg		<0.5			<0.5
Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg		<0.5			<0.5
Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg		<0.5			<0.5
^ Sum of polycyclic aromatic hydrocarbo	ons	0.5	mg/kg		<0.5			<0.5
^ Benzo(a)pyrene TEQ (zero)		0.5	mg/kg		<0.5			<0.5
^ Benzo(a)pyrene TEQ (half LOR)		0.5	mg/kg		0.6			0.6
^ Benzo(a)pyrene TEQ (LOR)		0.5	mg/kg		1.2			1.2
EP080/071: Total Petroleum Hydroca	rbons							
C6 - C9 Fraction		10	mg/kg		<10			<10
C10 - C14 Fraction		50	mg/kg		<50			<50
C15 - C28 Fraction		100	mg/kg		<100			<100
C29 - C36 Fraction		100	mg/kg		<100			<100
^ C10 - C36 Fraction (sum)		50	mg/kg		<50			<50
EP080/071: Total Recoverable Hydro	carbons - NEPM 201	3 Fractio	ns					
C6 - C10 Fraction	C6_C10	10	mg/kg		<10			<10
^ C6 - C10 Fraction minus BTEX	C6_C10-BTEX	10	mg/kg		<10			<10
(F1)								
>C10 - C16 Fraction		50	mg/kg		<50			<50
>C16 - C34 Fraction		100	mg/kg		<100			<100
>C34 - C40 Fraction		100	mg/kg		<100			<100
^ >C10 - C40 Fraction (sum)		50	mg/kg		<50			<50

Page : 20 of 23 Work Order : ES2221406 Client : REGIONAL GEOTECHNICAL SOLUTION Project : Rezoning

Sub-Matrix: SOIL			Sample ID	TP10	TP10	TP11	TP11	TP12
(Matrix: SOIL)				0-0.1	0.2-0.3	0-0.1	0.2-0.3	0-0.1
		Sampli	ng date / time	20-Jun-2022 00:00				
Compound	CAS Number	LOR	Unit	ES2221406-017	ES2221406-018	ES2221406-019	ES2221406-020	ES2221406-021
				Result	Result	Result	Result	Result
EP080/071: Total Recoverable Hydroc	arbons - NEPM 201	3 Fractio	ns - Continued					
^ >C10 - C16 Fraction minus Naphthalene		50	mg/kg		<50			<50
(F2)								
EP080: BTEXN								
Benzene	71-43-2	0.2	mg/kg		<0.2			<0.2
Toluene	108-88-3	0.5	mg/kg		<0.5			<0.5
Ethylbenzene	100-41-4	0.5	mg/kg		<0.5			<0.5
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg		<0.5			<0.5
ortho-Xylene	95-47-6	0.5	mg/kg		<0.5			<0.5
^ Sum of BTEX		0.2	mg/kg		<0.2			<0.2
^ Total Xylenes		0.5	mg/kg		<0.5			<0.5
Naphthalene	91-20-3	1	mg/kg		<1			<1
EP066S: PCB Surrogate								
Decachlorobiphenyl	2051-24-3	0.1	%		73.3			72.7
EP068S: Organochlorine Pesticide Su	irrogate							
Dibromo-DDE	21655-73-2	0.05	%		85.8			61.9
EP068T: Organophosphorus Pesticid	e Surrogate							
DEF	78-48-8	0.05	%		84.0			73.6
EP075(SIM)S: Phenolic Compound Su	ırrogates							
Phenol-d6	13127-88-3	0.5	%		81.6			88.6
2-Chlorophenol-D4	93951-73-6	0.5	%		89.3			87.3
2.4.6-Tribromophenol	118-79-6	0.5	%		72.2			87.2
EP075(SIM)T: PAH Surrogates								
2-Fluorobiphenyl	321-60-8	0.5	%		91.8			82.4
Anthracene-d10	1719-06-8	0.5	%		87.9			94.2
4-Terphenyl-d14	1718-51-0	0.5	%		83.1			90.0
EP080S: TPH(V)/BTEX Surrogates								
1.2-Dichloroethane-D4	17060-07-0	0.2	%		85.9			84.2
Toluene-D8	2037-26-5	0.2	%		80.4			87.3
4-Bromofluorobenzene	460-00-4	0.2	%		84.4			90.2

Page : 21 of 23 Work Order : ES2221406 Client : REGIONAL GEOTECHNICAL SOLUTION Project : Rezoning

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	D1					
		Sampli	ng date / time	20-Jun-2022 00:00					
Compound	CAS Number	LOR	Unit	ES2221406-022					
				Result					
EA055: Moisture Content (Dried @ 105-11	0°C)								
Moisture Content		1.0	%	13.9					
EG005(ED093)T: Total Metals by ICP-AES									
Arsenic	7440-38-2	5	mg/kg	<5					
Cadmium	7440-43-9	1	mg/kg	<1					
Chromium	7440-47-3	2	mg/kg	7					
Copper	7440-50-8	5	mg/kg	<5					
Lead	7439-92-1	5	mg/kg	<5					
Nickel	7440-02-0	2	mg/kg	<2					
Zinc	7440-66-6	5	mg/kg	5					
EG035T: Total Recoverable Mercury by F	EG035T: Total Recoverable Mercury by FIMS								
Mercury	7439-97-6	0.1	mg/kg	<0.1					

Page : 22 of 23 Work Order : ES2221406 Client : REGIONAL GEOTECHNICAL SOLUTION Project : Rezoning

Analytical Results

Sub-Matrix: SOLID (Matrix: SOLID)			Sample ID	TP3 0.2-0.3				
		Sampli	ng date / time	20-Jun-2022 00:00				
Compound	CAS Number	LOR	Unit	ES2221406-005				
				Result				
EA200: AS 4964 - 2004 Identification of Asbestos in bulk samples								
Asbestos Detected	1332-21-4	0.1	g/kg	Yes				
Asbestos Type	1332-21-4	-		Ch				
Asbestos (Trace)	1332-21-4	5	Fibres	N/A				
Sample weight (dry)		0.01	g	14.6				
Synthetic Mineral Fibre		0.1	g/kg	No				
Organic Fibre		0.1	g/kg	Yes				
APPROVED IDENTIFIER:		-		B.SCHRADER				

Analytical Results

Descriptive Results

Sub-Matrix: SOIL

Method: Compound	Sample ID - Sampling date / time	Analytical Results						
EA200: AS 4964 - 2004 Identification of Asbestos	in Soils							
EA200: Description	TP30.2-0.3 - 20-Jun-2022 00:00	Soil sample containing a collection of fibrous asbestos cement sheeting debris approxiamtely 20x20x2mm.						
EA200: Description	TP70-0.1 - 20-Jun-2022 00:00	Soil sample.						
EA200: Description	TP100-0.1 - 20-Jun-2022 00:00	Soil sample.						
Sub-Matrix: SOLID								
Method: Compound	Sample ID - Sampling date / time	Analytical Results						
EA200: AS 4964 - 2004 Identification of Asbestos in bulk samples								
EA200: Description	TP30.2-0.3 - 20-Jun-2022 00:00	One piece of asbestos cement sheeting approximately 60x35x5mm.						

Surrogate Control Limits

Sub-Matrix: SOIL		Recovery	Limits (%)
Compound	CAS Number	Low	High
EP066S: PCB Surrogate			
Decachlorobiphenyl	2051-24-3	39	149
EP068S: Organochlorine Pesticide Surrogate			
Dibromo-DDE	21655-73-2	49	147
EP068T: Organophosphorus Pesticide Surroga	te		
DEF	78-48-8	35	143
EP075(SIM)S: Phenolic Compound Surrogates			
Phenol-d6	13127-88-3	63	123
2-Chlorophenol-D4	93951-73-6	66	122
2.4.6-Tribromophenol	118-79-6	40	138
EP075(SIM)T: PAH Surrogates			
2-Fluorobiphenyl	321-60-8	70	122
Anthracene-d10	1719-06-8	66	128
4-Terphenyl-d14	1718-51-0	65	129
EP080S: TPH(V)/BTEX Surrogates			
1.2-Dichloroethane-D4	17060-07-0	73	133
Toluene-D8	2037-26-5	74	132
4-Bromofluorobenzene	460-00-4	72	130

Inter-Laboratory Testing

Analysis conducted by ALS Newcastle, NATA accreditation no. 825, site no. 1656 (Chemistry) 9854 (Biology).

(SOLID) EA200: AS 4964 - 2004 Identification of Asbestos in bulk samples

(SOIL) EA200: AS 4964 - 2004 Identification of Asbestos in Soils

(SOIL) EA150: Soil Classification based on Particle Size

(SOIL) EA152: Soil Particle Density

Appendix D

Letter from Dr David Tully CEnvP SC

Regional Geotechnical Solutions RGS20683.1-AC_Rev1 15 August 2022

Contaminated Land Solutions

15 August 2022

Ref: CLS0208.L02.1

Regional Geotechnical Solutions Pty Ltd 1/12 Jindalee Road Port Macquarie NSW 2444

For the attention of Tim Morris

Dear Tim,

RE: Review of Stage 1 Site Contamination Assessment Report – Proposed Rezoning Lot 2 DP601094 and Lot 4 DP825704, 11 and 33 Mumford Street, Port Macquarie

I, Dr David Tully of Contaminated Land Solutions Pty Ltd, am a Certified Environmental Practitioner Site Contamination Specialist (General Certified Environmental Practitioner certification no. 1138 and Site Contamination Specialist certification no. SC40084).

I confirm I have reviewed the Regional Geotechnical Solutions report entitled "Stage 1 Site Contamination Assessment Report – *Proposed Rezoning Lot 2 DP601094 and Lot 4 DP825704, 11 and 33 Mumford Street, Port Macquarie*" (Ref: RGS20683.1-AC_Rev1), dated 15 August 2022 and a copy of which I have retained.

I can confirm that on the basis of the information contained within the report, I support the conclusions and recommendations provided therein.

Should the client, regulator or local authority have any queries regarding the report review, I can be contacted by e-mail via <u>david.tully@contaminatedlandsolutions.com.au</u>. Specific queries regarding the content of the report should be addressed to Tim Morris at Regional Geotechnical Solutions.

For and on behalf of Contaminated Land Solutions Pty Ltd

Dr David Tully CEnvP SC Director Contaminated Land Solutions Pty Ltd

Contaminated Land Solutions Pty Ltd 10 Heath Road Crafers West SA 5152 0410 012 292 david.tully@contaminatedlandsolutions.com.au